首页 > 论文 > 激光与光电子学进展 > 57卷 > 22期(pp:221010--1)

结合DenseNet与通道注意力机制的空对地目标检测算法

Air-to-Ground Target Detection Algorithm Based on DenseNet and Channel Attention Mechanism

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

空对地环境下成像视角单一,且需要依靠深层网络提供强特征表达能力。针对深层网络存在的计算量大、收敛速度慢等问题,在稠密连接网络(DenseNet)框架下,提出了一种用通道差异化表示的目标检测网络模型。首先,用DenseNet作为特征提取网络,并用较少的参数加深网络,以提高网络对目标的提取能力;其次,引入通道注意力机制,使网络更关注特征层中的有效特征通道,重新调整特征图;最后,用空对地目标检测数据进行了对比实验。结果表明,改进模型的平均精度均值比基于视觉几何组(VGG16)的单步多框检测算法高3.44个百分点。

Abstract

In the air-to-ground environment, the imaging perspective is single, and it is necessary to rely on deep network to provide stronger feature representation capabilities. Aiming at the problems of large amount of calculation and slow convergence speed brought by deep network. Under the framework of densely connected network (DenseNet), a target detection network model expressed by channel differentiation is proposed. First, this article uses DenseNet as a feature extraction network, and uses fewer parameters to deepen the network to improve the ability to extract objects. Second, channel attention mechanism is introduced to make the network pay more attention to the effective feature channels in the feature layer and readjust the feature map. Finally, a comparative experiment is carried out by using the air-to-ground object detection data. The results show that the mean average precision of the improved model is 3.44 percentage points higher than that of single shot multibox detection algorithm based on visual geometry group (VGG16).

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TP391

DOI:10.3788/LOP57.221010

所属栏目:图像处理

收稿日期:2020-02-07

修改稿日期:2020-04-13

网络出版日期:2020-11-01

作者单位    点击查看

王文庆:西安邮电大学自动化学院, 陕西 西安 710121
丰林:西安邮电大学自动化学院, 陕西 西安 710121
刘洋:西安邮电大学自动化学院, 陕西 西安 710121
杨东方:火箭军工程大学导弹工程学院, 陕西 西安 710025
张萌:火箭军工程大学导弹工程学院, 陕西 西安 710025

联系人作者:刘洋(yyangbrand@163.com)

【1】Lowe D G. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision. 2004, 60(2): 91-110.Lowe D G. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision. 2004, 60(2): 91-110.

【2】Grauman K, Leibe B. Visual object recognition [J]. Synthesis Lectures on Artificial Intelligence and Machine Learning. 2011, 5(2): 1-181.

【3】Xu L X, Chen X J, Ban Y, et al. Method for intelligent detection of parking spaces based on deep learning [J]. Chinese Journal of Lasers. 2019, 46(4): 0404013.
徐乐先, 陈西江, 班亚, 等. 基于深度学习的车位智能检测方法 [J]. 中国激光. 2019, 46(4): 0404013.

【4】Cui J H, Zhang Y Z, Wang Z, et al. Light-weight object detection networks for embedded platform [J]. Acta Optica Sinica. 2019, 39(4): 0415006.
崔家华, 张云洲, 王争, 等. 面向嵌入式平台的轻量级目标检测网络 [J]. 光学学报. 2019, 39(4): 0415006.

【5】He K M, Gkioxari G, Dollár P, et al. Mask R-CNN [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2020, 42(2): 386-397.

【6】Ren S, He K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks [EB/OL]. 2020.Ren S, He K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks [EB/OL]. 2020.

【7】Girshick R. Fast R-CNN . [C]//2015 IEEE International Conference on Computer Vision (ICCV), December 7-13, 2015, Santiago, Chile. New York: IEEE. 2015, 1440-1448.

【8】Ren S Q, He K M, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2017, 39(6): 1137-1149.

【9】Howard A G, Zhu M L, Chen B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications [2020-01-30].https://arxiv.[2020-01-30]. 0, org/abs/1704: 04861.

【10】He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition . [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE. 2016, 770-778.

【11】Liu W, Anguelov D, Erhan D, et al. SSD: single shot MultiBox detector [M]. //Leibe B, Matas J, Sebe N, et al. Computer Vision-ECCV 2016. Lecture Notes in Computer Science. Cham: Springer. 2016, 9905: 21-37.

【12】Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-time object detection . [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE. 2016, 779-788.

【13】Zhao H, An W S. Image salient object detection combined with deep learning [J]. Laser & Optoelectronics Progress. 2018, 55(12): 121003.
赵恒, 安维胜. 结合深度学习的图像显著目标检测 [J]. 激光与光电子学进展. 2018, 55(12): 121003.

【14】Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision . [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE. 2016, 2818-2826.

【15】Wu P, Lin G Q, Guo Y R, et al. Self-learning sparse DenseNet image classification method [J]. Journal of Signal Processing. 2019, 35(10): 1747-1752.
吴鹏, 林国强, 郭玉荣, 等. 自学习稀疏密集连接卷积神经网络图像分类方法 [J]. 信号处理. 2019, 35(10): 1747-1752.

【16】Hu J, Shen L, Albanie S, et al. Squeeze-and-excitation networks [2020-01-31].https://arxiv.[2020-01-31]. 0, org/abs/1709: 01507.

【17】Zhang M, Wang S C, Yang D F. Air-to-ground target detection algorithm based on attention learning in key areas [J]. Laser&Optoelectronics Progress. 2020, 57(4): 041006.
张萌, 王仕成, 杨东方. 重点区域注意力学习的空对地目标检测算法 [J]. 激光与光电子学进展. 2020, 57(4): 041006.

【18】Everingham M, van Gool L, Williams C K I, et al. The pascal visual object classes (VOC) challenge [J]. International Journal of Computer Vision. 2010, 88(2): 303-338.

【19】Russakovsky O, Deng J, Su H, et al. ImageNet large scale visual recognition challenge [J]. International Journal of Computer Vision. 2015, 115(3): 211-252.

【20】Lin T Y, Maire M, Belongie S, et al. Microsoft COCO: common objects in context [2020-01-27].https://arxiv.[2020-01-27]. 0, org/abs/1405: 0312.

引用该论文

Wang Wenqing,Feng Lin,Liu Yang,Yang Dongfang,Zhang Meng. Air-to-Ground Target Detection Algorithm Based on DenseNet and Channel Attention Mechanism[J]. Laser & Optoelectronics Progress, 2020, 57(22): 221010

王文庆,丰林,刘洋,杨东方,张萌. 结合DenseNet与通道注意力机制的空对地目标检测算法[J]. 激光与光电子学进展, 2020, 57(22): 221010

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF