首页 > 论文 > Photonics Research > 8卷 > 10期(pp:15-24)

Disorder-protected quantum state transmission through helical coupled-resonator waveguides

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

We predict the preservation of temporal indistinguishability of photons propagating through helical coupled-resonator optical waveguides (H-CROWs). H-CROWs exhibit a pseudospin-momentum locked dispersion, which we show suppresses on-site disorder-induced backscattering and group velocity fluctuations. We simulate numerically the propagation of two-photon wave packets, demonstrating that they exhibit almost perfect Hong–Ou–Mandel dip visibility and then can preserve their quantum coherence even in the presence of moderate disorder, in contrast with regular CROWs, which are highly sensitive to disorder. As indistinguishability is the most fundamental resource of quantum information processing, H-CROWs may find applications for the implementation of robust optical links and delay lines in the emerging quantum photonic communication and computational platforms.

广告组1.2 - 空间光调制器+DMD
补充资料

DOI:10.1364/PRJ.399919

所属栏目:Research Articles

基金项目:Institute for Basic Science10.13039/501100010446; Australian Research Council10.13039/501100000923;

收稿日期:2020-06-17

录用日期:2020-08-07

网络出版日期:2020-08-10

作者单位    点击查看

JungYun Han:Center for Theoretical Physics of Complex Systems, Institute for Basic Science, Daejeon 34126, South Korea;Basic Science Program, University of Science and Technology, Daejeon 34113, South Korea
Andrey A. Sukhorukov:ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), Nonlinear Physics Centre, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
Daniel Leykam:Center for Theoretical Physics of Complex Systems, Institute for Basic Science, Daejeon 34126, South Korea;Basic Science Program, University of Science and Technology, Daejeon 34113, South Korea

联系人作者:Daniel Leykam(dleykam@ibs.re.kr)

备注:Institute for Basic Science10.13039/501100010446; Australian Research Council10.13039/501100000923;

【1】F. D. M. Haldane and S. Raghu. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, (2008).

【2】L. Lu, J. D. Joannopoulos and M. Solja?i?. Topological photonics. Nat. Photonics. 8, 821-829(2014).

【3】T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg and I. Carusotto. Topological photonics. Rev. Mod. Phys. 91, (2019).

【4】Z. Wang, Y. D. Chong, J. D. Joannopoulos and M. Solja?i?. Reflection-free one-way edge modes in a gyromagnetic photonic crystal. Phys. Rev. Lett. 100, (2008).

【5】Z. Wang, Y. Chong, J. D. Joannopoulos and M. Solja?i?. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature. 461, 772-775(2009).

【6】D. Smirnova, D. Leykam, Y. Chong and Y. Kivshar. Nonlinear topological photonics. Appl. Phys. Rev. 7, (2020).

【7】T. Ozawa and H. M. Price. Topological quantum matter in synthetic dimensions. Nat. Rev. Phys. 1, 349-357(2019).

【8】G. Harari, M. A. Bandres, Y. Lumer, M. C. Rechtsman, Y. D. Chong, M. Khajavikhan, D. N. Christodoulides and M. Segev. Topological insulator laser: theory. Science. 359, (2018).

【9】M. A. Bandres, S. Wittek, G. Harari, M. Parto, J. Ren, M. Segev, D. N. Christodoulides and M. Khajavikhan. Topological insulator laser: experiments. Science. 359, (2018).

【10】Y. Ota, K. Takata, T. Ozawa, A. Amo, Z. Jia, B. Kante, M. Notomi, Y. Arakawa and S. Iwamoto. Active topological photonics. Nanophotonics. 9, 547-567(2020).

【11】Z. Gong, Y. Ashida, K. Kawabata, K. Takasan, S. Higashikawa and M. Ueda. Topological phases of non-Hermitian systems. Phys. Rev. X. 8, (2018).

【12】S. Mittal, E. A. Goldschmidt and M. Hafezi. A topological source of quantum light. Nature. 561, 502-506(2018).

【13】J.-L. Tambasco, G. Corrielli, R. J. Chapman, A. Crespi, O. Zilberberg, R. Osellame and A. Peruzzo. Quantum interference of topological states of light. Sci. Adv. 4, (2018).

【14】A. Blanco-Redondo, B. Bell, D. Oren, B. J. Eggleton and M. Segev. Topological protection of biphoton states. Science. 362, 568-571(2018).

【15】M. Wang, C. Doyle, B. Bell, M. J. Collins, E. Magi, B. J. Eggleton, M. Segev and A. Blanco-Redondo. Topologically protected entangled photonic states. Nanophotonics. 8, 1327-1335(2019).

【16】C. Gneiting and F. Nori. Disorder-induced dephasing in backscattering-free quantum transport. Phys. Rev. Lett. 119, (2017).

【17】A. Streltsov, G. Adesso and M. B. Plenio. Colloquium: quantum coherence as a resource. Rev. Mod. Phys. 89, (2017).

【18】E. Joos, H. D. Zeh, C. Kiefer, D. J. Giulini, J. Kupsch and I.-O. Stamatescu. Decoherence and the Appearance of a Classical World in Quantum Theory. : Springer, (2013).

【19】C. M. Kropf, C. Gneiting and A. Buchleitner. Effective dynamics of disordered quantum systems. Phys. Rev. X. 6, (2016).

【20】M. C. Rechtsman, Y. Lumer, Y. Plotnik, A. Perez-Leija, A. Szameit and M. Segev. Topological protection of photonic path entanglement. Optica. 3, 925-930(2016).

【21】S. Mittal, V. V. Orre and M. Hafezi. Topologically robust transport of entangled photons in a 2D photonic system. Opt. Express. 24, 15631-15641(2016).

【22】C. Gneiting, D. Leykam and F. Nori. Disorder-robust entanglement transport. Phys. Rev. Lett. 122, (2019).

【23】L. Yuan, Q. Lin, A. Zhang, M. Xiao, X. Chen and S. Fan. Photonic gauge potential in one cavity with synthetic frequency and orbital angular momentum dimensions. Phys. Rev. Lett. 122, (2019).

【24】M. Hafezi, E. A. Demler, M. D. Lukin and J. M. Taylor. Robust optical delay lines with topological protection. Nat. Phys. 7, 907-912(2011).

【25】M. Hafezi, S. Mittal, J. Fan, A. Migdall and J. M. Taylor. Imaging topological edge states in silicon photonics. Nat. Photonics. 7, 1001-1005(2013).

【26】S. Mittal, J. Fan, S. Faez, A. Migdall, J. M. Taylor and M. Hafezi. Topologically robust transport of photons in a synthetic gauge field. Phys. Rev. Lett. 113, (2014).

【27】S. Mittal, S. Ganeshan, J. Fan, A. Vaezi and M. Hafezi. Measurement of topological invariants in a 2D photonic system. Nat. Photonics. 10, 180-183(2016).

【28】L.-H. Wu and X. Hu. Scheme for achieving a topological photonic crystal by using dielectric material. Phys. Rev. Lett. 114, (2015).

【29】Y. Plotnik, M. A. Bandres, S. Stützer, Y. Lumer, M. C. Rechtsman, A. Szameit and M. Segev. Analogue of Rashba pseudo-spin-orbit coupling in photonic lattices by gauge field engineering. Phys. Rev. B. 94, (2016).

【30】E. Lustig, S. Weimann, Y. Plotnik, Y. Lumer, M. A. Bandres, A. Szameit and M. Segev. Photonic topological insulator in synthetic dimensions. Nature. 567, 356-360(2019).

【31】Y. E. Kraus, Y. Lahini, Z. Ringel, M. Verbin and O. Zilberberg. Topological states and adiabatic pumping in quasicrystals. Phys. Rev. Lett. 109, (2012).

【32】C. H. L. Quay, T. L. Hughes, J. A. Sulpizio, L. N. Pfeiffer, K. W. Baldwin, K. W. West, D. Goldhaber-Gordon and R. de Picciotto. Observation of a one-dimensional spin orbit gap in a quantum wire. Nat. Phys. 6, 336-339(2010).

【33】J. Han, C. Gneiting and D. Leykam. Helical transport in coupled resonator waveguides. Phys. Rev. B. 99, (2019).

【34】C. Hong, Z. You and L. Mandel. Nonclassical photon interference effects. Photons and Quantum Fluctuations. 5, (1988).

【35】A. Yariv, Y. Xu, R. K. Lee and A. Scherer. Coupled-resonator optical waveguide: a proposal and analysis. Opt. Lett. 24, 711-713(1999).

【36】D. Leykam, S. Mittal, M. Hafezi and Y. D. Chong. Reconfigurable topological phases in next-nearest-neighbor coupled resonator lattices. Phys. Rev. Lett. 121, (2018).

【37】K. Gottfried and T.-M. Yan. Quantum Mechanics: Fundamentals. : Springer, (2003).

【38】A. Canciamilla, M. Torregiani, C. Ferrari, F. Morichetti, R. M. De La Rue, A. Samarelli, M. Sorel and A. Melloni. Silicon coupled-ring resonator structures for slow light applications: potential, impairments and ultimate limits. J. Opt. 12, (2010).

【39】C. W. Gardiner and M. J. Collett. Input and output in damped quantum systems: quantum stochastic differential equations and the master equation. Phys. Rev. A. 31, 3761-3774(1985).

【40】F. SchwablF. Schwabl. Advanced Quantum Mechanics. : Springer, (1997).

【41】R. LoudonR. Loudon. The Quantum Theory of Light. : Oxford University, (2000).

【42】A. M. BrańczykA. M. Brańczyk. Hong-Ou-Mandel interference. (2017).

【43】J. G. Titchener, M. Gr?fe, R. Heilmann, A. S. Solntsev, A. Szameit and A. A. Sukhorukov. Scalable on-chip quantum state tomography. npj Quantum Inf. 4, (2018).

【44】M. ZychM. Zych. Quantum systems under gravitational time dilation. : University of Vienna, (2015).

【45】T. Legero, T. Wilk, A. Kuhn and G. Rempe. Time-resolved two-photon quantum interference. Appl. Phys. B. 77, 797-802(2003).

【46】X. Y. Zou, L. J. Wang and L. Mandel. Induced coherence and indistinguishability in optical interference. Phys. Rev. Lett. 67, 318-321(1991).

【47】G. Weihs and A. Zeilinger. Photon statistics at beam-splitters: an essential tool in quantum information and teleportation. Coherence and Statistics of Photons and Atoms. : Wiley, 262-288(2001).

【48】H. Lee, P. Kok and J. P. Dowling. A quantum Rosetta stone for interferometry. J. Mod. Opt. 49, 2325-2338(2002).

【49】S. Paesani, M. Borghi, S. Signorini, A. Ma?nos, L. Pavesi and A. Laing. Near-ideal spontaneous photon sources in silicon quantum photonics. Nat. Commun. 11, (2020).

【50】S. Slussarenko, M. M. Weston, H. M. Chrzanowski, L. K. Shalm, V. B. Verma, S. W. Nam and G. J. Pryde. Unconditional violation of the shot-noise limit in photonic quantum metrology. Nat. Photonics. 11, 700-703(2017).

【51】M. A. Nielsen and I. Chuang. Quantum Computation and Quantum Information. : AAPT, (2002).

【52】S. Sadana, D. Ghosh, K. Joarder, A. N. Lakshmi, B. C. Sanders and U. Sinha. Near-100% two-photon-like coincidence-visibility dip with classical light and the role of complementarity. Phys. Rev. A. 100, (2019).

【53】E. De Faria and W. De Melo. Mathematical Aspects of Quantum Field Theory. : Cambridge University, 127, (2010).

引用该论文

JungYun Han, Andrey A. Sukhorukov, and Daniel Leykam, "Disorder-protected quantum state transmission through helical coupled-resonator waveguides," Photonics Research 8(10), B15 (2020)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF