首页 > 论文 > 激光与光电子学进展 > 56卷 > 23期(pp:231008--1)

基于改进的特征提取网络的目标检测算法

Object Detection Algorithm Based on Improved Feature Extraction Network

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对目标检测准确率低,物体位置不精准的缺点,设计了一种基于改进的特征提取网络的目标检测算法。首先将训练集进行数据增强;其次设计了一种双通道网络,用于目标检测算法Faster R-CNN的特征提取;最后在算法的预测部分,对非极大值抑制(NMS)机制进行了改进,并采用加权平均方法获取存在多个相近的预测框的位置。在VOC 2007和VOC 2012数据库上进行实验,表明本文算法比经典的目标检测算法效果要好,准确率达到79.1%,提升了3%~4%,验证了本文算法的有效性。

Abstract

In this study, an object detection algorithm is designed based on an improved feature extraction network to solve the shortcomings of low object detection accuracy and inaccurate object position detection. Initially, the training set is enhanced; subsequently, a two-path network is designed for usage in feature extraction of the Faster R-CNN algorithm; finally, the non-maximum suppression mechanism is improved in the prediction part of the algorithm, and the weighted averaging method is adopted for obtaining the positions of multiple similar prediction boxes. The experiments conducted using the VOC 2007 and VOC 2012 databases denote that the proposed algorithm outperforms the classical object detection algorithm, with an accuracy rate of 79.1% and an improvement of 3%-4%. Thus, the effectiveness of the algorithm is verified.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.231008

所属栏目:图像处理

基金项目:国家自然科学基金;

收稿日期:2019-04-26

修改稿日期:2019-06-03

网络出版日期:2019-12-01

作者单位    点击查看

乔婷:天津大学电气自动化与信息工程学院, 天津 300072
苏寒松:天津大学电气自动化与信息工程学院, 天津 300072
刘高华:天津大学电气自动化与信息工程学院, 天津 300072
王萌:天津大学电气自动化与信息工程学院, 天津 300072

联系人作者:刘高华(suppig@126.com)

备注:国家自然科学基金;

【1】He Z C, Zhao L Z, Chen C. Convolution neural network with multi-resolution feature fusion for facial expression recognition [J]. Laser & Optoelectronics Progress. 2018, 55(7): 071503.
何志超, 赵龙章, 陈闯. 用于人脸表情识别的多分辨率特征融合卷积神经网络 [J]. 激光与光电子学进展. 2018, 55(7): 071503.

【2】Chen Y, Fan R S, Wang J X, et al. Cloud detection of ZY-3 satellite remote sensing images based on deep learning [J]. Acta Optica Sinica. 2018, 38(1): 0128005.
陈洋, 范荣双, 王竞雪, 等. 基于深度学习的资源三号卫星遥感影像云检测方法 [J]. 光学学报. 2018, 38(1): 0128005.

【3】Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation . [C]∥2014 IEEE Conference on Computer Vision and Pattern Recognition, June 23-28, 2014, Columbus, OH, USA. New York: IEEE. 2014, 580-587.

【4】Girshick R. Fast R-CNN . [C]∥2015 IEEE International Conference on Computer Vision (ICCV), December 7-13, 2015, Santiago, Chile. New York: IEEE. 2015, 1440-1448.

【5】Ren S Q, He K M, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2017, 39(6): 1137-1149.

【6】Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-time object detection . [C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE. 2016, 779-788.

【7】Liu W, Anguelov D, Erhan D, et al. SSD: single shot MultiBox detector [M]. ∥Leibe B, Matas J, Sebe N, et al. Computer vision-ECCV 2016. Lecture notes in computer science. Cham: Springer. 2016, 9905: 21-37.

【8】Chen L L, Zhang Z D, Peng L. Real-time detection based on improved single shot MultiBox detector [J]. Laser & Optoelectronics Progress. 2019, 56(1): 011002.
陈立里, 张正道, 彭力. 基于改进SSD的实时检测方法 [J]. 激光与光电子学进展. 2019, 56(1): 011002.

【9】Dai J F, Li Y, He K M, et al. R-FCN: object detection via region-based fully convolutional networks . [C]∥Proceedings of the 30th International Conference on Neural Information Processing Systems, December 5-10, 2016, Barcelona, Spain. New York: ACM. 2016, 379-387.

【10】Cai Y Z, Yang D D, Mao N, et al. Visual tracking algorithm based on adaptive convolutional features [J]. Acta Optica Sinica. 2017, 37(3): 0315002.
蔡玉柱, 杨德东, 毛宁, 等. 基于自适应卷积特征的目标跟踪算法 [J]. 光学学报. 2017, 37(3): 0315002.

【11】Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks . [C]∥Proceedings of the 25th International Conference on Neural Information Processing Systems, December 3-6, 2012, Lake Tahoe, Nevada. New York: ACM. 2012, 1097-1105.

【12】Huang G. Liu Z, van der Maaten L, et al. Densely connected convolutional networks . [C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI, USA. New York: IEEE. 2017, 2261-2269.

【13】He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition . [C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE. 2016, 770-778.

【14】Neubeck A, van Gool L. Efficient non-maximum suppression . [C]∥18th International Conference on Pattern Recognition (ICPR''''06), August 20-24, 2006, Hong Kong, China. New York: IEEE. 2006, 9210072.

引用该论文

Qiao Ting,Su Hansong,Liu Gaohua,Wang Meng. Object Detection Algorithm Based on Improved Feature Extraction Network[J]. Laser & Optoelectronics Progress, 2019, 56(23): 231008

乔婷,苏寒松,刘高华,王萌. 基于改进的特征提取网络的目标检测算法[J]. 激光与光电子学进展, 2019, 56(23): 231008

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF