首页 > 论文 > 光学学报 > 39卷 > 10期(pp:1006004--1)

增益均衡的远程遥泵少模光纤放大器

Gain-Equalized Remotely Pumped Few-Mode Fiber Amplifier

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

随着云计算、大数据和物联网等新兴技术和业务的飞速发展,网络流量呈指数增长,单模光纤通信容量正逐渐逼近非线性香农极限[1]。发展新型技术以满足未来流量增长趋势已迫在眉睫。作为突破单模光纤通信容量危机的潜在途径,以少模光纤(FMF)中正交空间模式作为新增信道的模分复用技术(MDM),在最近几年得到广泛关注[2-5]。与波分复用(WDM)系统类似,MDM系统中不同模式信号较大的功率差,将导致系统容量下降、中断概率升高[6-7]。因此,不同模式在传输过程中需要得到均衡放大。如何实现不同模式的增益均衡成为少模光纤放大器研究中的重点,也是影响长距离MDM系统产业化的关键因素。

Abstract

Mode division multiplexing is becoming a potential approach to overcome the capacity crunch of a single-mode fiber transmission system. In the future mode- and wavelength-division multiplexing system, different spatial modes and the wavelength gain difference will affect the transmission capacity and speed. In this study, to realize the modal gain equalization and wavelength gain flatness, a 44.5 km few-mode fiber with ultra-low loss is pumped by the 1480 nm pump light with LP11 mode,and the distributed Raman amplification through the few-mode fiber is realized. The few-mode erbium doped fiber is pumped by the residual pump light, and the lumped few-mode erbium doped fiber amplification is realized. A remotely pumped few-mode fiber amplifier is experimentally demonstrated. The average equivalent on-off gain is greater than 15 dB, and a differential modal gain approximately 2 dB in the wavelength range of 1560-1600 nm is achieved.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/AOS201939.1006004

所属栏目:光纤光学与光通信

基金项目:国家973计划;

收稿日期:2019-04-04

修改稿日期:2019-06-24

网络出版日期:2019-10-01

作者单位    点击查看

张振振:天津大学精密仪器与光电子工程学院,光电信息技术教育部重点实验室, 天津 300072
郭骋:天津大学精密仪器与光电子工程学院,光电信息技术教育部重点实验室, 天津 300072
张一弛:烽火藤仓光纤有限公司, 湖北 武汉 430074
杜城:烽火藤仓光纤有限公司, 湖北 武汉 430074
崔亮:天津大学精密仪器与光电子工程学院,光电信息技术教育部重点实验室, 天津 300072
李小英:天津大学精密仪器与光电子工程学院,光电信息技术教育部重点实验室, 天津 300072

联系人作者:李小英(xiaoyingli@tju.edu.cn)

备注:国家973计划;

【1】Richardson D J. Filling the light pipe. Science. 330(6002), 327-328(2010).

【2】Li G F, Bai N, Zhao N B et al. Space-division multiplexing: the next frontier in optical communication. Advances in Optics and Photonics. 6(4), 413-487(2014).

【3】Xie Y W, Fu S N, Zhang H L et al. Design and optimization of mode differential group delay for few-mode fiber. Acta Optica Sinica. 33(9), (2013).
谢意维, 付松年, 张海亮 等. 少模光纤模式差分群时延的设计与优化. 光学学报. 33(9), (2013).

【4】Chen J K, Hu G J and Han Y Y. Communication experimental system with 3×3 mode division multiplexing based on photonic lantern. Chinese Journal of Lasers. 44(11), (2017).
陈嘉轲, 胡贵军, 韩悦羽. 基于光子灯笼的3×3模分复用通信实验系统. 中国激光. 44(11), (2017).

【5】Lu S F, Xiao Y Y and Jiang X Y. Research on fused taper all fiber multi-mode multiplexer/de-multiplexer. Chinese Journal of Lasers. 45(7), (2018).
陆少凡, 肖悦娱, 蒋晓勇. 熔融拉锥型全光纤多模式复用器/解复用器研究. 中国激光. 45(7), (2018).

【6】Winzer P J and Foschini G J. MIMO capacities and outage probabilities in spatially multiplexed optical transport systems. Optics Express. 19(17), 16680-16696(2011).

【7】Ho K P and Kahn J M. Mode-dependent loss and gain: statistics and effect on mode-division multiplexing. Optics Express. 19(17), 16612-16635(2011).

【8】Zhang Z Z, Guo C, Cui L et al. 21 spatial mode erbium-doped fiber amplifier for mode division multiplexing transmission. Optics Letters. 43(7), 1550-1553(2018).

【9】Bai N, Ip E, Wang T et al. Multimode fiber amplifier with tunable modal gain using a reconfigurable multimode pump. Optics Express. 19(17), 16601-16611(2011).

【10】Amma Y, Hosokawa T, Ono H et al. Ring-core multicore few-mode erbium-doped fiber amplifier. IEEE Photonics Technology Letters. 29(24), 2163-2166(2017).

【11】Kang Q Y and Lim E L. Jung F P Y, et al. Minimizing differential modal gain in cladding-pumped EDFAs supporting four and six mode groups. Optics Express. 22(18), 21499-21507(2014).

【12】Ryf R. Essiambre R, von Hoyningen-Huene J, et al. Analysis of mode-dependent gain in Raman amplified few-mode fiber. [C]//Optical Fiber Communication Conference 2012, March 4-8, 2012, Los Angeles, California. Washington, D.C.: OSA. OW1D, (2012).

【13】Zhou J H. An analytical approach for gain optimization in multimode fiber Raman amplifiers. Optics Express. 22(18), 21393-21402(2014).

【14】Li J X, Wang L L, Du J B et al. Experimental demonstration of a few-mode Raman amplifier with a flat gain covering 1530-1605 nm. Optics Letters. 43(18), 4530-4533(2018).

【15】Li J X, Cai C K, Du J B et al. Ultra-low-noise mode-division multiplexed WDM transmission over 100-km FMF based on a second-order few-mode Raman amplifier. Journal of Lightwave Technology. 36(16), 3254-3260(2018).

【16】Esmaeelpour M, Ryf R, Fontaine N K et al. Transmission over 1050-km few-mode fiber based on bidirectional distributed Raman amplification. Journal of Lightwave Technology. 34(8), 1864-1871(2016).

【17】Masuda H, Ono H, Takara H et al. Remotely pumped multicore erbium-doped fiber amplifier system with high pumping efficiency. [C]//2013 IEEE Photonics Society Summer Topical Meeting Series, July 8-10, 2013, Waikoloa, HI, USA. New York: IEEE. 13827215, (2013).

【18】Takara H, Mizuno T, Kawakami H et al. 120.7-Tb/s MCF-ROPA unrepeatered transmission of PDM-32QAM channels over 204 km. Journal of Lightwave Technology. 33(7), 1473-1478(2015).

【19】Zhang Z Z, Guo C, Cui L et al. Spectra of Raman scattering in few mode fibers. [C]//Laser Science 2018, September 16-20, 2018, Washington, D.C., United States. Washington, D.C.: OSA. JW3A, (2018).

【20】Yang H, Chen Z L, Liu W G et al. Recent progress in photonic lantern. Laser & Optoelectronics Progress. 55(12), (2018).
杨欢, 陈子伦, 刘文广 等. 光子灯笼研究进展. 激光与光电子学进展. 55(12), (2018).

引用该论文

Zhenzhen Zhang,Cheng Guo,Yichi Zhang,Cheng Du,Liang Cui,Xiaoying Li. Gain-Equalized Remotely Pumped Few-Mode Fiber Amplifier[J]. Acta Optica Sinica, 2019, 39(10): 1006004

张振振,郭骋,张一弛,杜城,崔亮,李小英. 增益均衡的远程遥泵少模光纤放大器[J]. 光学学报, 2019, 39(10): 1006004

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF