首页 > 论文 > 光学学报 > 39卷 > 10期(pp:1006004--1)

增益均衡的远程遥泵少模光纤放大器

Gain-Equalized Remotely Pumped Few-Mode Fiber Amplifier

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

模分复用技术是突破单模光纤通信系统容量极限的潜在途径。在未来可能存在的模分复用与波分复用相结合的系统中,不同空间模式和波长的增益差将制约系统容量和速率。为实现模式增益均衡和波长增益平坦,利用1480 nm LP11模式抽运光抽运44.5 km超低损少模光纤,进行分布式少模光纤拉曼放大。利用残余抽运光抽运少模掺铒光纤,进行集中式少模掺铒光纤放大,实验演示远程遥泵少模光纤放大器。实验表明,在1560~1600 nm增益平坦带宽范围内,LP01和LP11两个模式等效开关增益大于15 dB,模间增益差约为2 dB。

Abstract

Mode division multiplexing is becoming a potential approach to overcome the capacity crunch of a single-mode fiber transmission system. In the future mode- and wavelength-division multiplexing system, different spatial modes and the wavelength gain difference will affect the transmission capacity and speed. In this study, to realize the modal gain equalization and wavelength gain flatness, a 44.5 km few-mode fiber with ultra-low loss is pumped by the 1480 nm pump light with LP11 mode,and the distributed Raman amplification through the few-mode fiber is realized. The few-mode erbium doped fiber is pumped by the residual pump light, and the lumped few-mode erbium doped fiber amplification is realized. A remotely pumped few-mode fiber amplifier is experimentally demonstrated. The average equivalent on-off gain is greater than 15 dB, and a differential modal gain approximately 2 dB in the wavelength range of 1560-1600 nm is achieved.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN913.7

DOI:10.3788/AOS201939.1006004

所属栏目:光纤光学与光通信

基金项目:国家973计划;

收稿日期:2019-04-04

修改稿日期:2019-06-24

网络出版日期:2019-10-01

作者单位    点击查看

张振振:天津大学精密仪器与光电子工程学院,光电信息技术教育部重点实验室, 天津 300072
郭骋:天津大学精密仪器与光电子工程学院,光电信息技术教育部重点实验室, 天津 300072
张一弛:烽火藤仓光纤有限公司, 湖北 武汉 430074
杜城:烽火藤仓光纤有限公司, 湖北 武汉 430074
崔亮:天津大学精密仪器与光电子工程学院,光电信息技术教育部重点实验室, 天津 300072
李小英:天津大学精密仪器与光电子工程学院,光电信息技术教育部重点实验室, 天津 300072

联系人作者:李小英(xiaoyingli@tju.edu.cn)

备注:国家973计划;

【1】Richardson D J. Filling the light pipe [J]. Science. 2010, 330(6002): 327-328.

【2】Li G F, Bai N, Zhao N B et al. Space-division multiplexing: the next frontier in optical communication [J]. Advances in Optics and Photonics. 2014, 6(4): 413-487.

【3】Xie Y W, Fu S N, Zhang H L et al. Design and optimization of mode differential group delay for few-mode fiber [J]. Acta Optica Sinica. 2013, 33(9): 0906010.
谢意维, 付松年, 张海亮 等. 少模光纤模式差分群时延的设计与优化 [J]. 光学学报. 2013, 33(9): 0906010.

【4】Chen J K, Hu G J and Han Y Y. Communication experimental system with 3×3 mode division multiplexing based on photonic lantern [J]. Chinese Journal of Lasers. 2017, 44(11): 1106009.
陈嘉轲, 胡贵军, 韩悦羽. 基于光子灯笼的3×3模分复用通信实验系统 [J]. 中国激光. 2017, 44(11): 1106009.

【5】Lu S F, Xiao Y Y and Jiang X Y. Research on fused taper all fiber multi-mode multiplexer/de-multiplexer [J]. Chinese Journal of Lasers. 2018, 45(7): 0706002.
陆少凡, 肖悦娱, 蒋晓勇. 熔融拉锥型全光纤多模式复用器/解复用器研究 [J]. 中国激光. 2018, 45(7): 0706002.

【6】Winzer P J and Foschini G J. MIMO capacities and outage probabilities in spatially multiplexed optical transport systems [J]. Optics Express. 2011, 19(17): 16680-16696.

【7】Ho K P and Kahn J M. Mode-dependent loss and gain: statistics and effect on mode-division multiplexing [J]. Optics Express. 2011, 19(17): 16612-16635.

【8】Zhang Z Z, Guo C, Cui L et al. 21 spatial mode erbium-doped fiber amplifier for mode division multiplexing transmission [J]. Optics Letters. 2018, 43(7): 1550-1553.

【9】Bai N, Ip E, Wang T et al. Multimode fiber amplifier with tunable modal gain using a reconfigurable multimode pump [J]. Optics Express. 2011, 19(17): 16601-16611.

【10】Amma Y, Hosokawa T, Ono H et al. Ring-core multicore few-mode erbium-doped fiber amplifier [J]. IEEE Photonics Technology Letters. 2017, 29(24): 2163-2166.

【11】Kang Q Y and Lim E L. Jung F P Y, et al. Minimizing differential modal gain in cladding-pumped EDFAs supporting four and six mode groups [J]. Optics Express. 2014, 22(18): 21499-21507.

【12】Ryf R. Essiambre R, von Hoyningen-Huene J, et al. Analysis of mode-dependent gain in Raman amplified few-mode fiber . [C]//Optical Fiber Communication Conference 2012, March 4-8, 2012, Los Angeles, California. Washington, D.C.: OSA. 2012, OW1D: 2.

【13】Zhou J H. An analytical approach for gain optimization in multimode fiber Raman amplifiers [J]. Optics Express. 2014, 22(18): 21393-21402.

【14】Li J X, Wang L L, Du J B et al. Experimental demonstration of a few-mode Raman amplifier with a flat gain covering 1530-1605 nm [J]. Optics Letters. 2018, 43(18): 4530-4533.

【15】Li J X, Cai C K, Du J B et al. Ultra-low-noise mode-division multiplexed WDM transmission over 100-km FMF based on a second-order few-mode Raman amplifier [J]. Journal of Lightwave Technology. 2018, 36(16): 3254-3260.

【16】Esmaeelpour M, Ryf R, Fontaine N K et al. Transmission over 1050-km few-mode fiber based on bidirectional distributed Raman amplification [J]. Journal of Lightwave Technology. 2016, 34(8): 1864-1871.

【17】Masuda H, Ono H, Takara H et al. Remotely pumped multicore erbium-doped fiber amplifier system with high pumping efficiency . [C]//2013 IEEE Photonics Society Summer Topical Meeting Series, July 8-10, 2013, Waikoloa, HI, USA. New York: IEEE. 2013, 13827215:

【18】Takara H, Mizuno T, Kawakami H et al. 120.7-Tb/s MCF-ROPA unrepeatered transmission of PDM-32QAM channels over 204 km [J]. Journal of Lightwave Technology. 2015, 33(7): 1473-1478.

【19】Zhang Z Z, Guo C, Cui L et al. Spectra of Raman scattering in few mode fibers . [C]//Laser Science 2018, September 16-20, 2018, Washington, D.C., United States. Washington, D.C.: OSA. 2018, JW3A: 78.

【20】Yang H, Chen Z L, Liu W G et al. Recent progress in photonic lantern [J]. Laser & Optoelectronics Progress. 2018, 55(12): 120002.
杨欢, 陈子伦, 刘文广 等. 光子灯笼研究进展 [J]. 激光与光电子学进展. 2018, 55(12): 120002.

引用该论文

Zhang Zhenzhen,Guo Cheng,Zhang Yichi,Du Cheng,Cui Liang,Li Xiaoying. Gain-Equalized Remotely Pumped Few-Mode Fiber Amplifier[J]. Acta Optica Sinica, 2019, 39(10): 1006004

张振振,郭骋,张一弛,杜城,崔亮,李小英. 增益均衡的远程遥泵少模光纤放大器[J]. 光学学报, 2019, 39(10): 1006004

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF