首页 > 论文 > Photonics Research > 8卷 > 9期(pp:1409-1415)

Structural color switching with a doped indium-gallium-zinc-oxide semiconductor

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Structural coloration techniques have improved display science due to their high durability in terms of resistance to bleaching and abrasion, and low energy consumption. Here, we propose and demonstrate an all-solid-state, large-area, lithography-free color filter that can switch structural color based on a doped semiconductor. Particularly, an indium-gallium-zinc-oxide (IGZO) thin film is used as a passive index-changing layer. The refractive index of the IGZO layer is tuned by controlling the charge carrier concentration; a hydrogen plasma treatment is used to control the conductivity of the IGZO layer. In this paper, we verify the color modulation using finite difference time domain simulations and experiments. The IGZO-based color filter technology proposed in this study will pave the way for charge-controlled tunable color filters displaying a wide gamut of colors on demand.

广告组1.2 - 空间光调制器+DMD
补充资料

DOI:10.1364/PRJ.395749

所属栏目:Optical and Photonic Materials

基金项目:Samsung Research Funding & Incubation Center for Future Technology;

收稿日期:2020-04-21

录用日期:2020-06-21

网络出版日期:2020-06-22

作者单位    点击查看

Inki Kim:Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
Juyoung Yun:Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
Trevon Badloe:Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
Hyuk Park:Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
Taewon Seo:Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
Younghwan Yang:Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
Juhoon Kim:Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
Yoonyoung Chung:Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea;e-mail: ychung@postech.ac.kr
Junsuk Rho:Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea;Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea;National Institute of Nanomaterials Technology (NINT), Pohang 37673, South Korea

联系人作者:Junsuk Rho(jsrho@postech.ac.kr)

备注:Samsung Research Funding & Incubation Center for Future Technology;

【1】A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas and N. A. Mortensen. Plasmonic colour generation. Nat. Rev. Mater. 2, (2016).

【2】T. Lee, J. Jang, H. Jeong and J. Rho. Plasmonic- and dielectric-based structural coloring: from fundamentals to practical applications. Nano Converg. 5, (2018).

【3】I. Kim, G. Yoon, J. Jang, P. Genevet, K. T. Nam and J. Rho. Outfitting next generation displays with optical metasurfaces. ACS Photon. 5, 3876-3895(2018).

【4】C. U. Hail, G. Schnoering, M. Damak, D. Poulikakos and H. Eghlidi. A plasmonic painter’s method of color mixing for a continuous red-green-blue palette. ACS Nano. 14, 1783-1791(2020).

【5】M. Song, D. Wang, S. Peana, S. Choudhury, P. Nyga, Z. A. Kudyshev, H. Yu, A. Boltasseva, V. M. Shalaev and A. V. Kildishev. Colors with plasmonic nanostructures: a full-spectrum review. Appl. Phys. Rev. 6, (2019).

【6】K. Kumar, H. Duan, R. S. Hegde, C. W. Koh, J. N. Wei and J. K. W. Yang. Printing color at the optical diffraction limit. Nat. Nanotechnol. 7, 557-561(2012).

【7】B. Yang, W. Liu, Z. Li, H. Cheng, D.-Y. Choi, S. Chen and J. Tian. Ultrahighly saturated structural colors enhanced by multipolar-modulated metasurfaces. Nano Lett. 19, 4221-4228(2019).

【8】J.-H. Yang, V. E. Babicheva, M.-W. Yu, T.-C. Lu, T.-R. Lin and K.-P. Chen. Structural colors enabled by lattice resonance on silicon nitride metasurfaces. ACS Nano. 14, 5678-5685(2020).

【9】W. Yang, S. Xiao, Q. Song, Y. Liu, Y. Wu, S. Wang, J. Yu, J. Han and D.-P. Tsai. All-dielectric metasurface for high-performance structural color. Nat. Commun. 11, (2020).

【10】E. H?jlund-Nielsen, J. Clausen, T. M?kela, L. H. Thamdrup, M. Zalkovskij, T. Nielsen, N. L. Pira, J. Ahopelto, N. A. Mortensen and A. Kristensen. Plasmonic colors: toward mass production of metasurfaces. Adv. Mater. Technol. 1, (2016).

【11】Z. Li, S. Butun and K. Aydin. Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films. ACS Photon. 2, 183-188(2015).

【12】S.-J. Kim, H.-K. Choi, H. Lee and S.-H. Hong. Solution-processable nanocrystal-based broadband Fabry–Perot absorber for reflective vivid color generation. ACS Appl. Mater. Interface. 11, 7280-7287(2019).

【13】C. Williams, G. S. D. Gordon, T. D. Wilkinson and S. E. Bohndiek. Grayscale-to-color: scalable fabrication of custom multispectral filter arrays. ACS Photon. 6, 3132-3141(2019).

【14】J. Jang, K. Kang, N. Raeis-Hosseini, A. Ismukhanova, H. Jeong, C. Jeong, B. Kim, J.-Y. Lee, I. Park and J. Rho. Self-powered humidity sensor using chitosan-based plasmonic metal-hydrogel-metal filters. Adv. Opt. Mater. 8, (2020).

【15】S. Bang, J. Kim, G. Yoon, T. Tanaka and J. Rho. Recent advances in tunable and reconfigurable metamaterials. Micromachines. 9, (2018).

【16】M. L. Tseng, J. Yang, M. Semmlinger, C. Zhang, P. Nordlander and N. J. Halas. Two-dimensional active tuning of an aluminum plasmonic array for full-spectrum response. Nano Lett. 17, 6034-6039(2017).

【17】H. Kwon and S. Kim. Chemically tunable, biocompatible, and cost-effective metal-insulator-metal resonators using silk protein and ultrathin silver films. ACS Photon. 2, 1675-1680(2015).

【18】S. D. Rezaei, J. Ho, A. Naderi, M. T. Yaraki, T. Wang, Z. Dong, S. Ramakrishna and J. K. W. Yang. Tunable, cost-effective, and scalable structural colors for sensing and consumer products. Adv. Opt. Mater. 7, (2019).

【19】Y. Nagasaki, M. Suzuki and J. Takahara. All-dielectric dual-color pixel with subwavelength resolution. Nano Lett. 17, 7500-7506(2017).

【20】B. Yang, W. Liu, Z. Li, H. Cheng, S. Chen and J. Tian. Polarization-sensitive structural colors with hue-and-saturation tuning based on all-dielectric nanopixels. Adv. Opt. Mater. 6, (2018).

【21】J. Jang, H. Jeong, G. Hu, C.-W. Qiu, K. T. Nam and J. Rho. Tunable metasurfaces: Kerker-conditioned dynamics cryptographic nanoprints. Adv. Opt. Mater. 7, (2019).

【22】M. Kim, I. Kim, J. Jang, D. Lee, K. T. Nam and J. Rho. Active color control in a metasurface by polarization rotation. Appl. Sci. 8, (2018).

【23】H. Yun, S.-Y. Lee, K. Hong, J. Yeom and B. Lee. Plasmonic cavity-apertures as dynamic pixels for the simultaneous control of colour and intensity. Nat. Commun. 6, (2015).

【24】H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho and K. T. Nam. Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature. 556, 360-365(2018).

【25】F.-Z. Shu, F.-F. Yu, R.-W. Peng, Y.-Y. Zhu, B. Xiong, R.-H. Fan, Z.-H. Wang, Y. Liu and M. Wang. Dynamic plamonic color generation based on phase transition of vanadium dioxide. Adv. Opt. Mater. 6, (2018).

【26】T. Badloe, I. Kim and J. Rho. Moth-eye shaped on-demand broadband and switchable perfect absorbers based on vanadium dioxide. Sci. Rep. 10, (2020).

【27】P. Hosseini, C. D. Wright and H. Bhaskaran. An optoelectronic framework enabled by low-dimensional phase-change films. Nature. 511, 206-211(2014).

【28】S. Yoo, T. Gwon, T. Eom, S. Kim and C. S. Hwang. Multicolor changeable optical coating by adopting multiple layers of ultrathin phase change material film. ACS Photon. 3, 1265-1270(2016).

【29】N. Raeis-Hosseini, S. Lim, H. Hwang and J. Rho. Reliable Ge2Sb2Te5-integrated high-density nanoscale conductive bridge random access memory using facile nitrogen-doping strategy. Adv. Electron. Mater. 4, (2018).

【30】N. Raeis-Hosseini and J. Rho. Dual-functional nanoscale devices using phase change materials: reconfigurable perfect absorber with nonvolatile resistance-change memory characteristics. Appl. Sci. 9, (2019).

【31】W. Dong, H. Liu, J. K. Behera, L. Lu, R. J. H. Ng, K. V. Sreekanth, X. Zhou and J. K. W. Yang. Wide bandgap change material tuned visible photonics. Adv. Funct. Mater. 29, (2019).

【32】X. Y. Duan, S. Kamin and N. Liu. Dynamic plasmonic colour display. Nat. Commun. 8, (2017).

【33】Y. Chen, X. Y. Duan, M. Matuschek, Y. Zhou, F. Neubrech, H. G. Duan and N. Liu. Dynamic color displays using stepwise cavity resonators. Nano Lett. 17, 5555-5560(2017).

【34】N. Liu, M. L. Tang, M. Hentschel and H. Giessen. Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat. Mater. 10, 631-636(2011).

【35】D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu and D. Chanda. Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces. Nat. Commun. 6, (2015).

【36】K. Xiong, D. Tordera, G. Emilsson, O. Olsson, U. Linderhed, M. P. Jonsson and A. B. Dahlin. Switchable plasmonic metasurfaces with high chromaticity containing only abundant metals. Nano Lett. 17, 7033-7039(2017).

【37】J. Peng, H.-H. Jeong, Q. Lin, S. Cormier, H.-L. Liang, M. F. L. De Volder, S. Vignolini and J. J. Baumberg. Scalable electrochromic nanopixels using plasmonics. Sci. Adv. 5, (2019).

【38】G. Yoon, S. So, M. Kim, J. Mun, R.-M. Ma and J. Rho. Electrically tunable metasurface perfect absorber for infrared frequencies. Nano Converg. 4, (2017).

【39】Y. Li, J. van de Groep, A. A. Talin and M. L. Brongersma. Dynamic tuning of gap plasmon resonances using a solid-state electrochromic device. Nano Lett. 19, 7988-7995(2019).

【40】M. Huang, A. J. Tan, F. Büttner, H. Liu, Q. Ruan, W. Hu, C. Mazzoli, S. Wilkins, C. Duan, J. K. W. Yang and G. S. D. Beach. Voltage-gated optics and plasmonics enabled by solid-state proton pumping. Nat. Commun. 10, (2019).

【41】Y. Yu, Y. Yu, L. Huang, H. Peng, L. Xiong and L. Cao. Giant gating tunability of optical refractive index in transition metal dichalcogenide monolayers. Nano Lett. 17, 3613-3618(2017).

【42】H. HosonoH. Hosono. How we made the IGZO transistor. Nat. Electron. 1, (2018).

【43】J. K. Jeong, J. H. Jeong, J. H. Choi, J. S. Im, S. H. Kim, H. W. Yang, K. N. Kang, K. S. Kim, T. K. Ahn, H.-J. Chung, M. Kim, B. S. Gu, J.-S. Park, Y.-G. Mo and H. D. Kim. 3.1: Distinguished Paper: 12.1-inch WXGA AMOLED display driven by indium-gallium-zinc oxide TFTs array. SID Symp. Dig. Tech. Pap. 39, 1-4(2008).

【44】D. Geng, S. Han, H. Seo, M. Mativenga and J. Jang. Piezoelectric pressure sensing device using top-gate effect of dual-gate a-IGZO TFT. IEEE Sens. J. 17, 585-586(2017).

【45】Y.-H. Tai, H.-L. Chiu and L.-S. Chou. Active matrix touch sensor detecting time-constant change implemented by dual-gate IGZO TFTs. Solid-State Electron. 72, 67-72(2012).

【46】H. Chen, Y. Cao, J. Zhang and C. Zhou. Large-scale complementary macroelectronics using hybrid integration of carbon nanotubes and IGZO thin-film transistors. Nat. Commun. 5, (2014).

【47】T. Kamiya, K. Nomura and H. Hosono. Present status of amorphous In-Ga-Zn-O thin-film transistors. Sci. Tech. Adv. Mater. 11, (2010).

【48】H. Fujiwara and M. Kondo. Effects of carrier concentration on the dielectric function of ZnO:Ga and In2O3:Sn studied by spectroscopic ellipsometry: analysis of free-carrier and band-edge absorption. Phys. Rev. B. 71, (2005).

【49】X. D. Li, S. Chen, T. P. Chen and Y. Liu. Thickness dependence of optical properties of amorphous indium gallium zinc oxide thin films: effects of free-electrons and quantum confinement. ECS Solid State Lett. 4, P29-P32(2015).

【50】J.-S. Park, J. K. Jeong, Y.-G. Mo, H. D. Kim and S.-I. Kim. Improvements in the device characteristics of amorphous indium gallium zinc oxide thin-film transistors by Ar plasma treatment. Appl. Phys. Lett. 90, (2007).

【51】I. Sajedian, T. Badloe and J. Rho. Optimization of colour generation from dielectric nanostructures using reinforcement learning. Opt. Express. 27, 5874-5883(2019).

【52】T. Badloe, I. Kim and J. Rho. Biomimetic ultra-broadband perfect absorbers optimized with reinforcement learning. Phys. Chem. Chem. Phys. 22, 2337-2342(2020).

引用该论文

Inki Kim, Juyoung Yun, Trevon Badloe, Hyuk Park, Taewon Seo, Younghwan Yang, Juhoon Kim, Yoonyoung Chung, and Junsuk Rho, "Structural color switching with a doped indium-gallium-zinc-oxide semiconductor," Photonics Research 8(9), 1409-1415 (2020)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF