首页 > 论文 > 中国激光 > 47卷 > 7期(pp:701008--1)

基于二维层状材料的激光器 (特邀综述)

Lasers Based on Two-Dimensional Layered Materials (Invited)

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

二维过渡金属硫族化合物(TMDC)具有独特的优势,可以作为增益材料实现激光发射。TMDC材料固有的强库仑相互作用和弱的介电屏蔽效应使其具有大的激子结合能,从而有助于实现室温下稳定的激子发光,其高达6~7的折射率能够提高光约束能力,原子层表面没有悬空键,当与硅基半导体器件连接时,能够避免晶格失配。这些独特性质使其成为极具潜力的增益材料,可以与硅基微腔连接构成激光器件,原子级厚度和近红外的光谱辐射能使其与集成器件互联。本文从光学微腔的分类和激光原理,以及二维材料激光器等方面总结了近几年基于TMDC材料的激光器研究进展,并指出了当前存在的问题及展望了其发展前景。

Abstract

Two-dimensional transition-metal dichalcogenides (TMDC) have unique advantages and can be used as gain materials for laser emission. The strong Coulomb interaction and weak dielectric screening effect of TMDC materials induce a large exciton binding energy to achieve stable exciton emission at room temperature. Moreover, TMDC can extensively increase the capability of light confinement owing to its high refractive index of up to 6--7. The atomic layer surface of TMDC materials has no dangling bonds, so they can avoid lattice mismatch when connected with silicon-based semiconductor devices. These unique properties render TMDC as potential gain materials that can be coupled with silicon-based microcavities to form laser devices. Furthermore, their atomic thickness and near-infrared spectral radiation ensure promising interconnection with integrated devices. This study summarizes the research progress of lasers based on TMDCs in recent years with the classification of optical microcavities and laser principles. Moreover, current challenges and their future application prospects are also discussed.

广告组5 - 光束分析仪
补充资料

中图分类号:O436

DOI:10.3788/CJL202047.0701008

所属栏目:“半导体激光器”专题

基金项目:国家自然科学基金、山东省研究生教育质量提升计划项目、国家重点研发计划;

收稿日期:2020-01-19

修改稿日期:2020-02-19

网络出版日期:2020-07-01

作者单位    点击查看

王琪:山东师范大学物理与电子科学学院, 山东 济南 250358国家纳米科学中心, 中国科学院纳米科学卓越创新中心, 中国科学院纳米标准与检测重点实验室, 北京 100190
钟阳光:国家纳米科学中心, 中国科学院纳米科学卓越创新中心, 中国科学院纳米标准与检测重点实验室, 北京 100190
赵丽云:北京大学工学院材料科学与工程系, 北京 100871
史建伟:国家纳米科学中心, 中国科学院纳米科学卓越创新中心, 中国科学院纳米标准与检测重点实验室, 北京 100190
张帅:国家纳米科学中心, 中国科学院纳米科学卓越创新中心, 中国科学院纳米标准与检测重点实验室, 北京 100190
王公堂:山东师范大学物理与电子科学学院, 山东 济南 250358
张青:北京大学工学院材料科学与工程系, 北京 100871北京大学宽禁带半导体研究中心, 北京 100871
刘新风:国家纳米科学中心, 中国科学院纳米科学卓越创新中心, 中国科学院纳米标准与检测重点实验室, 北京 100190中国科学院大学, 北京 100049

联系人作者:王公堂(wanggt@sdnu.edu.cn); 张青(q_zhang@pku.edu.cn); 刘新风(liuxf@nanoctr.cn);

备注:国家自然科学基金、山东省研究生教育质量提升计划项目、国家重点研发计划;

【1】Hall R N, Fenner G E, Kingsley J D, et al. Coherent light emission from GaAs junctions [J]. Physical Review Letters. 1962, 9(9): 366-368.

【2】Gather M C, Yun S H. Single-cell biological lasers [J]. Nature Photonics. 2011, 5(7): 406-410.

【3】Du W N, Zhang S, Shi J, et al. Strong exciton-photon coupling and lasing behavior in all-inorganic CsPbBr3 micro/nanowire Fabry-Perot cavity [J]. ACS Photonics. 2018, 5(5): 2051-2059.

【4】Zhong Y G, Wei Q, Liu Z, et al. Low threshold Fabry-Perot mode lasing from lead iodide trapezoidal nanoplatelets [J]. Small. 2018, 14(35): 1801938.

【5】Mi Y, Zhong Y G, Zhang Q, et al. Continuous-wave pumped perovskite lasers [J]. Advanced Optical Materials. 2019, 7(17): 1900544.

【6】Leuthold J, Hoessbacher C, Muehlbrandt S, et al. Plasmonic communications: light on a wire [J]. Optics and Photonics News. 2013, 24(5): 28-35.

【7】Huo C X, Wang Z M, Li X M, et al. Low-dimensional metal halide perovskites: a kind of microcavity laser materials [J]. Chinese Journal of Lasers. 2017, 44(7): 0703008.
霍成学, 王子明, 李晓明, 等. 低维金属卤化物钙钛矿: 一种微腔激光材料 [J]. 中国激光. 2017, 44(7): 0703008.

【8】Chen J, Du W N, Shi J W, et al. Perovskite quantum dot lasers [J]. InfoMat. 2020, 2(1): 170-183.

【9】Liang D, Bowers J E. Recent progress in lasers on silicon [J]. Nature Photonics. 2010, 4(8): 511-517.

【10】Howlader M M R, Watanabe T, Suga T. Investigation of the bonding strength and interface current of p-Si/n-GaAs wafers bonded by surface activated bonding at room temperature [J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures. 2001, 19(6): 2114-2118.

【11】Zhou Y C, Zhu Z H, Crouse D, et al. Electrical properties of wafer-bonded GaAs/Si heterojunctions [J]. Applied Physics Letters. 1998, 73(16): 2337-2339.

【12】Cong C X, Shang J Z, Wu X, et al. Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition [J]. Advanced Optical Materials. 2014, 2(2): 131-136.

【13】Chang Y H, Zhang W J, Zhu Y H, et al. Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection [J]. ACS Nano. 2014, 8(8): 8582-8590.

【14】Dumcenco D, Ovchinnikov D, Marinov K, et al. Large-area epitaxial monolayer MoS2 [J]. ACS Nano. 2015, 9(4): 4611-4620.

【15】Huang J K, Pu J, Hsu C L, et al. Large-area synthesis of highly crystalline WSe2 monolayers and device applications [J]. ACS Nano. 2014, 8(1): 923-930.

【16】Lee Y H, Zhang X Q, Zhang W J, et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition [J]. Advanced Materials. 2012, 24(17): 2320-2325.

【17】Ji Q Q, Zhang Y F, Gao T, et al. Epitaxial monolayer MoS2 on mica with novel photoluminescence [J]. Nano Letters. 2013, 13(8): 3870-3877.

【18】Zhang Y S, Shi J P, Han G F, et al. Chemical vapor deposition of monolayer WS2 nanosheets on Au foils toward direct application in hydrogen evolution [J]. Nano Research. 2015, 8(9): 2881-2890.

【19】Gao Y, Liu Z B, Sun D M, et al. Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils [J]. Nature Communications. 2015, 6: 8569.

【20】Yang P F, Zou X L, Zhang Z P, et al. Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass [J]. Nature Communications. 2018, 9: 979.

【21】Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films [J]. Science. 2004, 306(5696): 666-669.

【22】Novoselov K S, Jiang D, Schedin F, et al. Two-dimensional atomic crystals [J]. Proceedings of the National Academy of Sciences of the United States of America. 2005, 102(30): 10451-10453.

【23】Morozov S V, Novoselov K S, Katsnelson M I, et al. Giant intrinsic carrier mobilities in graphene and its bilayer [J]. Physical Review Letters. 2008, 100: 016602.

【24】Geim A K, Novoselov K S. The rise of graphene [J]. Nature Materials. 2007, 6(3): 183-191.Geim A K, Novoselov K S. The rise of graphene [J]. Nature Materials. 2007, 6(3): 183-191.

【25】Allen M J, Tung V C, Kaner R B. Honeycomb carbon: a review of graphene [J]. Chemical Reviews. 2010, 110(1): 132-145.

【26】Kim K, Choi J Y, Kim T, et al. A role for graphene in silicon-based semiconductor devices [J]. Nature. 2011, 479(7373): 338-344.

【27】Pan A L, Zhang K, Liu X F, et al. Focus on 2D material nanophotonics [J]. Nanotechnology. 2019, 30(3): 030201.

【28】Splendiani A, Sun L, Zhang Y B, et al. Emerging photoluminescence in monolayer MoS2 [J]. Nano Letters. 2010, 10(4): 1271-1275.

【29】Cheiwchanchamnangij T. Lambrecht W R L. Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2 [J]. Physical Review B. 2012, 85(20): 205302.

【30】Ramasubramaniam A. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides [J]. Physical Review B. 2012, 86(11): 115409.

【31】Qiu D Y, da Jornada F H, Louie S G. Optical spectrum of MoS2: many-body effects and diversity of exciton states [J]. Physical Review Letters. 2013, 111(21): 216805.

【32】Chernikov A, Berkelbach T C, Hill H M, et al. Exciton binding energy and Nonhydrogenic Rydberg Series in monolayer WS2 [J]. Physical Review Letters. 2014, 113(7): 076802.

【33】He K L, Kumar N, Zhao L, et al. Tightly bound excitons in monolayer WSe2 [J]. Physical Review Letters. 2014, 113(2): 026803.

【34】Wang G, Marie X, Gerber I, et al. Giant enhancement of the optical second-harmonic emission of WSe2 monolayers by laser excitation at exciton resonances [J]. Physical Review Letters. 2015, 114(9): 097403.

【35】Ruppert C, Aslan O B, Heinz T F. Optical properties and band gap of single- and few-layer MoTe2 crystals [J]. Nano Letters. 2014, 14(11): 6231-6236.

【36】Lien D H, Amani M, Desai S B, et al. Large-area and bright pulsed electroluminescence in monolayer semiconductors [J]. Nature Communications. 2018, 9: 1229.

【37】Behnia K. Polarized light boosts valleytronics [J]. Nature Nanotechnology. 2012, 7(8): 488-489.

【38】Xiao D, Liu G B, Feng W X, et al. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides [J]. Physical Review Letters. 2012, 108(19): 196802.

【39】Zeng H L, Dai J F, Yao W, et al. Valley polarization in MoS2 monolayers by optical pumping [J]. Nature Nanotechnology. 2012, 7(8): 490-493.

【40】Cao T, Wang G, Han W P, et al. Valley-selective circular dichroism of monolayer molybdenum disulphide [J]. Nature Communications. 2012, 3: 887.

【41】Mak K F, He K L, Shan J, et al. Control of valley polarization in monolayer MoS2 by optical helicity [J]. Nature Nanotechnology. 2012, 7(8): 494-498.

【42】Schaibley J R, Yu H Y, Clark G, et al. Valleytronics in 2D materials [J]. Nature Reviews Materials. 2016, 1(11): 16055.

【43】Geim A K, Grigorieva I V. Van der Waals heterostructures [J]. Nature. 2013, 499(7459): 419-425.

【44】Hong X P, Kim J, Shi S F, et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures [J]. Nature Nanotechnology. 2014, 9(9): 682-686.

【45】Ceballos F, Bellus M Z, Chiu H Y, et al. Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure [J]. ACS Nano. 2014, 8(12): 12717-12724.

【46】Fang H, Battaglia C, Carraro C, et al. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides [J]. Proceedings of the National Academy of Sciences of the United States of America. 2014, 111(17): 6198-6202.

【47】Rivera P, Schaibley J R, Jones A M, et al. Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures [J]. Nature Communications. 2015, 6: 6242.

【48】Mak K F, Shan J. Opportunities and challenges of interlayer exciton control and manipulation [J]. Nature Nanotechnology. 2018, 13(11): 974-976.

【49】Binder J, Howarth J, Withers F, et al. Upconverted electroluminescence via Auger scattering of interlayer excitons in van der Waals heterostructures [J]. Nature Communications. 2019, 10: 2335.

【50】Mak K F, Lee C, Hone J, et al. Atomically thin MoS2: a new direct-gap semiconductor [J]. Physical Review Letters. 2010, 105(13): 136805.

【51】Bernardi M, Palummo M, Grossman J C. Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials [J]. Nano Letters. 2013, 13(8): 3664-3670.

【52】Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides [J]. Nature Nanotechnology. 2012, 7(11): 699-712.

【53】Cheng R, Li D H, Zhou H L, et al. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes [J]. Nano Letters. 2014, 14(10): 5590-5597.

【54】Bao W Z, Cai X H, Kim D, et al. High mobility ambipolar MoS2 field-effect transistors: substrate and dielectric effects [J]. Applied Physics Letters. 2013, 102(4): 042104.

【55】Radisavljevic B, Kis A. Mobility engineering and a metal-insulator transition in monolayer MoS2 [J]. Nature Materials. 2013, 12(9): 815-820.

【56】Xie S, Liang T, Ma X Y, et al. Preparation, properties and optoelectronic applications of transition metal dichalcogenides [J]. Chinese Journal of Lasers. 2017, 44(7): 0703001.
谢爽, 梁涛, 马向阳, 等. 过渡金属硫族化合物的制备、特性和光电应用 [J]. 中国激光. 2017, 44(7): 0703001.

【57】Li H, Wu J, Yin Z Y, et al. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets [J]. Accounts of Chemical Research. 2014, 47(4): 1067-1075.

【58】Perea-López N, Lin Z, Pradhan N R, et al. CVD-grown monolayered MoS2 as an effective photosensor operating at low-voltage [J]. 2D Materials. 2014, 1(1): 011004.

【59】Vahala K J. Optical microcavities [J]. Nature. 2003, 424(6950): 839-846.

【60】Yang S C, Wang Y, Sun H D. Advances and prospects for whispering gallery mode microcavities [J]. Advanced Optical Materials. 2015, 3(9): 1136-1162.

【61】Heylman K D, Knapper K A, Horak E H, et al. Optical microresonators for sensing and transduction: a materials perspective [J]. Advanced Materials. 2017, 29(30): 1700037.

【62】Guilhabert B, Foucher C, Haughey A M, et al. Nanosecond colloidal quantum dot lasers for sensing [J]. Optics Express. 2014, 22(6): 7308-7319.

【63】Garrett C G B, Kaiser W, Bond W L. Stimulated emission into optical whispering modes of spheres [J]. Physical Review. 1961, 124(6): 1807-1809.

【64】Tamboli A C, Haberer E D, Sharma R, et al. Room-temperature continuous-wave lasing in GaN/InGaN microdisks [J]. Nature Photonics. 2007, 1(1): 61-64.

【65】Chao C Y, Guo L J. Biochemical sensors based on polymer microrings with sharp asymmetrical resonance [J]. Applied Physics Letters. 2003, 83(8): 1527-1529.

【66】Du W N, Zhang S, Wu Z Y, et al. Unveiling lasing mechanism in CsPbBr3 microsphere cavities [J]. Nanoscale. 2019, 11(7): 3145-3153.

【67】Zhang Y, Chen M X, Li Y Y, et al. Application and development prospects of optical micro-resonators [J]. Laser & Optoelectronics Progress. 2015, 52(4): 040002.
张莹, 陈梅雄, 李莹颖, 等. 光学微腔的应用和发展前景 [J]. 激光与光电子学进展. 2015, 52(4): 040002.

【68】Mi Y, Jin B, Zhao L Y, et al. High-quality hexagonal nonlayered CdS nanoplatelets for low-threshold whispering-gallery-mode lasing [J]. Small. 2019, 15(35): 1901364.

【69】Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics [J]. Physical Review Letters. 1987, 58(20): 2059-2062.

【70】John S. Strong localization of photons in certain disordered dielectric superlattices [J]. Physical Review Letters. 1987, 58(23): 2486-2489.

【71】Xu G W, Ouyang Z B, Ruan S C, et al. Recent progress of photonic crystal lasers [J]. Chinese Journal of Lasers. 2004, 31(s1): 79-81.
许桂雯, 欧阳征标, 阮双琛, 等. 光子晶体激光器的最新进展 [J]. 中国激光. 2004, 31(s1): 79-81.

【72】Liu X Z, Galfsky T, Sun Z, et al. Strong light-matter coupling in two-dimensional atomic crystals [J]. Nature Photonics. 2015, 9(1): 30-34.

【73】Dufferwiel S, Schwarz S, Withers F, et al. Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities [J]. Nature Communications. 2015, 6: 8579.

【74】Wu S F, Buckley S, Jones A M, et al. Control of two-dimensional excitonic light emission via photonic crystal [J]. 2D Materials. 2014, 1(1): 011001.

【75】Gan X T, Gao Y D, Mak K, et al. Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity [J]. Applied Physics Letters. 2013, 103(18): 181119.

【76】Schwarz S, Dufferwiel S, Walker P M, et al. Two-dimensional metal-chalcogenide films in tunable optical microcavities [J]. Nano Letters. 2014, 14(12): 7003-7008.

【77】Wu S F, Buckley S, Schaibley J R, et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds [J]. Nature. 2015, 520(7545): 69-72.

【78】Ye Y, Wong Z J, Lu X F, et al. Monolayer excitonic laser [J]. Nature Photonics. 2015, 9(11): 733-737.

【79】Salehzadeh O, Djavid M, Tran N H, et al. Optically pumped two-dimensional MoS2 lasers operating at room-temperature [J]. Nano Letters. 2015, 15(8): 5302-5306.

【80】Shang J Z, Cong C X, Wang Z L, et al. Room-temperature 2D semiconductor activated vertical-cavity surface-emitting lasers [J]. Nature Communications. 2017, 8: 543.

【81】Li Y Z, Zhang J X, Huang D D, et al. Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity [J]. Nature Nanotechnology. 2017, 12(10): 987-992.

【82】Fang H L, Liu J, Li H J, et al. 1305 nm few-layer MoTe2-on-silicon laser-like emission [J]. Laser & Photonics Reviews. 2018, 12(6): 1800015.

【83】Fang H L, Liu J, Lin Q L, et al. Laser-like emission from a sandwiched MoTe2 heterostructure on a silicon single-mode resonator [J]. Advanced Optical Materials. 2019, 7(20): 1900538.

【84】Zhao L Y, Shang Q Y, Gao Y, et al. High-temperature continuous-wave pumped lasing from large-area monolayer semiconductors grown by chemical vapor deposition [J]. ACS Nano. 2018, 12(9): 9390-9396.

【85】Liu Y D, Fang H L, Rasmita A, et al. 5(4): eaav4506 . 2019.

【86】Paik E Y, Zhang L, Burg G W, et al. Interlayer exciton laser of extended spatial coherence in atomically thin heterostructures [J]. Nature. 2019, 576(7785): 80-84.

【87】Ross J S, Klement P, Jones A M, et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions [J]. Nature Nanotechnology. 2014, 9(4): 268-272.

【88】Withers F, del Pozo-Zamudio O, Mishchenko A, et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures [J]. Nature Materials. 2015, 14(3): 301-306.

【89】Liu C H, Clark G, Fryett T, et al. Nanocavity integrated van der Waals heterostructure light-emitting tunneling diode [J]. Nano Letters. 2017, 17(1): 200-205.

【90】Bhattacharya P, Xiao B, Das A, et al. Solid state electrically injected exciton-polariton laser [J]. Physical Review Letters. 2013, 110(20): 206403.

【91】Ohtani K, Meng B, Franckié M, et al. 5(7): eaau1632 . 2019.

【92】Bhattacharya P, Frost T, Deshpande S, et al. Room temperature electrically injected polariton laser [J]. Physical Review Letters. 2014, 112(23): 236802.

【93】Zhang Q. LiuX F. Exciton-polaritons in semiconductors [J]. Journal of Semiconductors. 2019, 40(9): 090401.

引用该论文

Wang Qi,Zhong Yangguang,Zhao Liyun,Shi Jianwei,Zhang Shuai,Wang Gongtang,Zhang Qing,Liu Xinfeng. Lasers Based on Two-Dimensional Layered Materials[J]. Chinese Journal of Lasers, 2020, 47(7): 0701008

王琪,钟阳光,赵丽云,史建伟,张帅,王公堂,张青,刘新风. 基于二维层状材料的激光器[J]. 中国激光, 2020, 47(7): 0701008

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF