首页 > 论文 > Photonics Research > 8卷 > 9期(pp:1468-1474)

Experimental observation of an anomalous weak value without post-selection

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Weak measurement has been shown to play important roles in the investigation of both fundamental and practical problems. Anomalous weak values are generally believed to be observed only when post-selection is performed, i.e., only a particular subset of the data is considered. Here, we experimentally demonstrate that an anomalous weak value can be obtained without discarding any data by performing a sequential weak measurement on a single-qubit system. By controlling the blazing density of the hologram on a spatial light modulator, the measurement strength can be conveniently controlled. Such an anomalous phenomenon disappears when the measurement strength of the first observable becomes strong. Moreover, we find that the anomalous weak value cannot be observed without post-selection when the sequential measurement is performed on each of the components of a two-qubit system, which confirms that the observed anomalous weak value is based on sequential weak measurement of two noncommutative operators.

广告组1.2 - 空间光调制器+DMD
补充资料

DOI:10.1364/PRJ.393480

所属栏目:Quantum Optics

基金项目:National Key Research and Development Program of China10.13039/501100012166; National Natural Science Foundation of China10.13039/501100001809; Youth Innovation Promotion Association of the Chinese Academy of Sciences10.13039/501100004739; Key Research Program of Frontier Sciences, Chinese Academy of Sciences (CAS); Science Foundation of the CAS; Anhui Initiative in Quantum Information Technologies; Fundamental Research Funds for the Central Universities10.13039/501100012226; Natural Science Foundation of Chongqing10.13039/501100005230; Entrepreneurship and Innovation Support Program for Chongqing Overseas Returnees; fund of CAS Key Laboratory of Microscale Magnetic Resonance, and the fund of CAS Key Laboratory of Quantum Information;

收稿日期:2020-03-24

录用日期:2020-07-03

网络出版日期:2020-07-07

作者单位    点击查看

Mu Yang:CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China;CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Qiang Li:CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China;CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Zheng-Hao Liu:CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China;CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Ze-Yan Hao:CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China;CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Chang-Liang Ren:Center for Nanofabrication and System Integration, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China;e-mail: renchangliang@cigit.ac.cn
Jin-Shi Xu:CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China;CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China;e-mail: jsxu@ustc.edu.cn
Chuan-Feng Li:CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China;CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China;e-mail: cfli@ustc.edu.cn
Guang-Can Guo:CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China;CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China

联系人作者:Chang-Liang Ren(renchangliang@cigit.ac.cn); Jin-Shi Xu(jsxu@ustc.edu.cn); Chu(cfli@ustc.edu.cn);

备注:National Key Research and Development Program of China10.13039/501100012166; National Natural Science Foundation of China10.13039/501100001809; Youth Innovation Promotion Association of the Chinese Academy of Sciences10.13039/501100004739; Key Research Program of Frontier Sciences, Chinese Academy of Sciences (CAS); Science Foundation of the CAS; Anhui Initiative in Quantum Information Technologies; Fundamental Research Funds for the Central Universities10.13039/501100012226; Natural Science Foundation of Chongqing10.13039/501100005230; Entrepreneurship and Innovation Support Program for Chongqing Overseas Returnees; fund of CAS Key Laboratory of Microscale Magnetic Resonance, and the fund of CAS Key Laboratory of Quantum Information;

【1】Y. Aharonov, D. Z. Albert and L. Vaidman. How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351-1354(1988).

【2】I. M. Duck, P. M. Stevenson and E. C. G. Sudarshan. The sense in which a “weak measurement” of a spin-1/2 particle’s spin component yields a value 100. Phys. Rev. D. 40, 2112-2117(1989).

【3】A. G. Kofman, S. Ashkab and F. Nori. Nonperturbative theory of weak pre-and post-selected measurements. Phys. Rep. 520, 43-133(2012).

【4】J. Dressel, M. Malik, F. M. Miatto, A. N. Jordan and R. W. Boyd. Colloquium: understanding quantum weak values: basics and applications. Rev. Mod. Phys. 86, 307-316(2014).

【5】Y. Aharonov, A. Botero, S. Popescu, B. Reznik and J. Tollaksen. Revisiting Hardy’s paradox: counterfactual statements, real measurements, entanglement and weak values. Phys. Lett. A. 301, 130-138(2002).

【6】J. S. Lundeen and A. M. Steinberg. Experimental joint weak measurement on a photon pair as a probe of Hardy’s paradox. Phys. Rev. Lett. 102, (2009).

【7】K. Yokota, T. Yamamoto, M. Koashi and N. Imoto. Direct observation of Hardy’s paradox by joint weak measurement with an entangled photon pair. New J. Phys. 11, (2009).

【8】H. M. WisemanH. M. Wiseman. Grounding Bohmian mechanics in weak values and bayesianism. New J. Phys. 9, 165-175(2007).

【9】R. Mir, J. S. Lundeen, M. W. Mitchell, A. M. Steinberg, J. L. Garretson and H. M. Wiseman. A double-slit which-way experiment on the complementarity uncertainty debate. New J. Phys. 9, (2007).

【10】K. J. Resch, J. S. Lundeen and A. M. Steinberg. Experimental realization of the quantum box problem. Phys. Lett. A. 324, 125-131(2004).

【11】A. Palacios-Laloy, F. Mallet, F. Nguyen, P. Bertet, D. Vion, D. Esteve and A. N. Korotkov. Experimental violation of a Bell’s inequality in time with weak measurement. Nat. Phys. 6, 442-447(2010).

【12】J. Dressel, C. J. Broadbent, J. C. Howell and A. N. Jordan. Experimental violation of two-party Leggett-Garg inequalities with semiweak measurements. Phys. Rev. Lett. 106, (2011).

【13】Y. Suzuki, M. Iinuma and H. F. Hofmann. Violation of Leggett–Garg inequalities in quantum measurements with variable resolution and back-action. New J. Phys. 14, (2012).

【14】C. Emary, N. Lambert and F. Nori. Leggett-Garg inequalities. Rep. Prog. Phys. 77, (2014).

【15】A. N. Jordan, J. Martinez-Rincon and J. C. Howell. Technical advantages for weak-value amplification: when less is more. Phys. Rev. X. 4, (2014).

【16】G. I. Viza, J. Martinez-Rincon, G. B. Alves, A. N. Jordan and J. C. Howell. Experimentally quantifying the advantages of weak-value-based metrology. Phys. Rev. A. 92, (2015).

【17】P. B. Dixon, D. J. Starling, A. N. Jordan and J. C. Howell. Ultrasensitive beam deflection measurement via interferometric weak value amplification. Phys. Rev. Lett. 102, (2009).

【18】O. Hosten and P. Kwiat. Observation of the spin Hall effect of light via weak measurements. Science. 319, 787-790(2008).

【19】N. Brunner and C. Simon. Measuring small longitudinal phase shifts: weak measurements or standard interferometry?. Phys. Rev. Lett. 105, (2010).

【20】X.-Y. Xu, Y. Kedem, K. Sun, L. Vaidman, C.-F. Li and G.-C. Guo. Phase estimation with weak measurement using a white light source. Phys. Rev. Lett. 111, (2013).

【21】G. Strubi and C. Bruder. Measuring ultrasmall time delays of light by joint weak measurements. Phys. Rev. Lett. 110, (2013).

【22】A. Feizpour, X. Xing and A. M. Steinberg. Amplifying single-photon nonlinearity using weak measurements. Phys. Rev. Lett. 107, (2011).

【23】J. Dressel, K. Y. Bliokh and F. Nori. Classical field approach to quantum weak measurements. Phys. Rev. Lett. 112, (2014).

【24】C. Ferrie and J. Combes. Weak value amplification is suboptimal for estimation and detection. Phys. Rev. Lett. 112, (2014).

【25】J. Combes, C. Ferrie, Z. Jiang and C. M. Caves. Quantum limits on postselected, probabilistic quantum metrology. Phys. Rev. A. 89, (2014).

【26】L. VaidmanL. Vaidman. Weak value controversy. Philos. Trans. R. Soc. London, Ser. A. 375, (2017).

【27】J. Martínez-Rincón, W.-T. Liu, G. I. Viza and J. C. Howell. Can anomalous amplification be attained without postselection?. Phys. Rev. Lett. 116, (2016).

【28】L. P. García-Pintos and J. Dressel. Past observable dynamics of a continuously monitored qubit. Phys. Rev. A. 96, (2017).

【29】G. Mitchison, R. Jozsa and S. Popescu. Sequential weak measurement. Phys. Rev. A. 76, (2007).

【30】A. A. Abbott, R. Silva, J. Wechs, N. Brunner and C. Branciard. Anomalous weak values without post-selection. Quantum. 3, 194-208(2019).

【31】E. CohenE. Cohen. Quantum measurements-yet another surprise. Quantum Views. 3, (2019).

【32】H. M. WisemanH. M. Wiseman. Weak values, quantum trajectories, and the cavity-QED experiment on wave-particle correlation. Phys. Rev. A. 65, (2002).

【33】Y. Turek, H. Kobayashi, T. Akutsu, C. P. Sun and Y. Shikano. Post-selected von Neumann measurement with Hermite–Gaussian and Laguerre–Gaussian pointer states. New J. Phys. 17, (2015).

【34】J. S. Chen, M. J. Hu, X. M. Hu, B. H. Liu, Y. F. Huang, C. F. Li, C. G. Guo and Y. S. Zhang. Experimental realization of sequential weak measurements of non-commuting Pauli observables. Opt. Express. 27, 6089-6097(2019).

【35】Q. Li, C.-J. Zhang, Z.-D. Cheng, W.-Z. Liu, J.-F. Wang, F.-F. Yan, Z.-H. Lin, Y. Xiao, K. Sun, Y.-T. Wang, J.-S. Tang, J.-S. Xu, C.-F. Li and G.-C. Guo. Experimental simulation of anti-parity-time symmetric Lorentz dynamics. Optica. 6, 67-71(2019).

【36】. (0).

【37】H. Kobayashi, G. Puentes and Y. Shikano. Extracting joint weak values from two-dimensional spatial displacements. Phys. Rev. A. 86, (2012).

【38】S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm and A. M. Steinberg. Observing the average trajectories of single photons in a two-slit interferometer. Science. 332, 1170-1173(2011).

【39】M. Yang, Y. Xiao, Y. W. Liao, Z. H. Liu, X. Y. Xu, J. S. Xu, C. F. Li and G. C. Guo. Zonal reconstruction of photonic wavefunction via momentum weak measurement. Laser Photon. Rev. 14, (2020).

【40】G. Horowitz and J. Maldacena. The black hole final state. J. High Energy Phys. 2004, (2004).

【41】Y. Aharonov and E. Cohen. Weak values and quantum nonlocality. (2015).

【42】E. Cohen and M. Nowakowski. Comment on ‘Measurements without probabilities in the final state proposal’. Phys. Rev. D. 97, (2018).

【43】R. Bousso and D. Stanford. Reply to “Comment on ‘Measurements without probabilities in the final state proposal’”. Phys. Rev. D. 97, (2018).

【44】Y. Aharonov, S. Popescu and J. Tollaksen. Each instant of time a new universe. Quantum Theory: A Two-Time Success Story. : Springer, 21-36(2014).

【45】Y.-W. Cho, Y. Kim, Y.-H. Choi, Y.-S. Kim, S.-W. Han, S.-Y. Lee, S. Moon and Y.-H. Kim. Emergence of the geometric phase from quantum measurement back-action. Nat. Phys. 15, 665-670(2019).

引用该论文

Mu Yang, Qiang Li, Zheng-Hao Liu, Ze-Yan Hao, Chang-Liang Ren, Jin-Shi Xu, Chuan-Feng Li, and Guang-Can Guo, "Experimental observation of an anomalous weak value without post-selection," Photonics Research 8(9), 1468-1474 (2020)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF