首页 > 论文 > 中国激光 > 46卷 > 9期(pp:901007--1)

超短脉冲激光与固体靶作用产生光核中子的数值模拟研究

Numerical Simulation of Photoneutron Generation in Ultra-Intense Short Laser-Solid Interactions

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

采用超短脉冲激光与固体靶作用产生光核中子的模型,使用蒙特卡罗程序Fluka研究了激光诱导光核中子源的特性。对不同材料和电子温度条件下中子产生的模拟表明,钨是最佳的靶材料,且对于不同的超热电子温度,存在不同的产额饱和厚度。对源尺寸的模拟表明,中子源的尺寸决定于入射电子束发散角和靶厚,可以通过增加靶半径的方式提升前向与侧向中子通量的比值至5。当电子温度大于4 MeV时,可以获得能谱结构稳定的光核中子源。对时间分布的模拟表明,中子源的脉宽小于30 ps,且飞行后的脉宽展宽系数为100 ps/mm。

Abstract

The generation of photoneutrons in ultra-intense short laser-solid interactions is modeled, and the properties of the laser-induced photoneutron sources are studied using the Monte Carlo simulation code Fluka. Further, neutron generation is simulated for different materials and electron temperatures. The results denote that tungsten exhibits the optimal performance and that the neutron yield exhibits different saturation thickness values at different temperatures. The neutron source size can be determined using the electrons'' spread angle and the target thickness. Ratios that are as high as 5 can be achieved between the fluxes in the forward and sideways directions by increasing the target radius. Further, stable energy spectra can be obtained for the photoneutron source when the electron temperature is greater than 4 MeV. The time distribution results denote that the neutron pulse duration is less than 30 ps and that its stretching factor after flight is 100 ps/mm.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/CJL201946.0901007

所属栏目:激光器件与激光物理

基金项目:科学挑战计划、国家重点研发计划;

收稿日期:2019-04-01

修改稿日期:2019-05-14

网络出版日期:2019-09-01

作者单位    点击查看

齐伟:中国工程物理研究院激光聚变研究中心等离子体物理重点实验室, 四川 绵阳 621900
贺书凯:中国工程物理研究院激光聚变研究中心等离子体物理重点实验室, 四川 绵阳 621900
闫永宏:中国工程物理研究院激光聚变研究中心等离子体物理重点实验室, 四川 绵阳 621900
周维民:中国工程物理研究院激光聚变研究中心等离子体物理重点实验室, 四川 绵阳 621900
谷渝秋:中国工程物理研究院激光聚变研究中心等离子体物理重点实验室, 四川 绵阳 621900

联系人作者:齐伟(yqgu@caep.cn); 谷渝秋( yqgu@caep.cn);

备注:科学挑战计划、国家重点研发计划;

【1】Park H S, Hurricane O, Callahan D et al. High-adiabat high-foot inertial confinement fusion implosion experiments on the national ignition facility. Physical Review Letters. 112(5), (2014).

【2】Roth M, Jung D, Falk K et al. Bright laser-driven neutron source based on the relativistic transparency of solids. Physical Review Letters. 110(4), (2013).

【3】Jiao X J, Shaw J M, Wang T et al. A tabletop, ultrashort pulse photoneutron source driven by electrons from laser wakefield acceleration. Matter and Radiation at Extremes. 2(6), 296-302(2017).

【4】Pomerantz I. McCary E, Meadows A R, et al. Laser generation of ultra-short neutron bursts from high atomic number converters. Proceedings of SPIE. 9514, (2015).

【5】Arikawa Y, Utsugi M, Alessio M et al. High-intensity neutron generation via laser-driven photonuclear reaction. Plasma and Fusion Research. 10, (2015).

【6】Pomerantz I. McCary E, Meadows A, et al. Ultrashort pulsed neutron source. Physical Review Letters. 113(18), (2014).

【7】Lai D G, Zhang Y M, Li J X et al. Design of bremsstrahlung composite thin converter for high current electron beams. High Power Laser and Particle Beams. 25(6), 1396-1400(2013).
来定国, 张永民, 李进玺 等. 强流电子束轫致辐射复合薄靶设计. 强激光与粒子束. 25(6), 1396-1400(2013).

【8】Yang X H. Study of generation and propagation of fast electrons in ultraintense laser pulse interaction with plasmas. Changsha: National University of Defense Technology. 38-39(2012).
杨晓虎. 超强激光与等离子体相互作用中超热电子的产生和输运研究. 长沙: 国防科学技术大学. 38-39(2012).

【9】Guo B Q, Li Q F, Du T B et al. Analysis of angular distribution and photon yield from bremsstrahlung targets. High Energy Physics and Nuclear Physics. 29(12), 1190-1195(2005).
郭冰琪, 李泉凤, 杜泰斌 等. 轫致辐射靶的发射率及角分布分析. 高能物理与核物理. 29(12), 1190-1195(2005).

【10】Wang G L, Yao H F, Zhang T et al. Simulation study of all optical-FEL based on the laser wakefield accelerator. Chinese Journal of Lasers. 41(9), (2014).
王光磊, 姚海凤, 张彤 等. 激光尾场电子加速器驱动的全光学FEL物理模拟研究. 中国激光. 41(9), (2014).

【11】Umstadter D. Laser light splits atom. Nature. 404(6775), (2000).

【12】Ledingham K W D and Norreys P A. Nuclear physics merely using a light source. Contemporary Physics. 40(6), 367-383(1999).

【13】Blatt J M. Theoretical nuclear physics. New York: Courier Dover Publications. (1991).

【14】Boyer K, Luk T S and Rhodes C K. Possibility of optically induced nuclear fission. Physical Review Letters. 60(7), 557-560(1988).

【15】Berman B L and Fultz S C. Measurements of the giant dipole resonance with monoenergetic photons. Reviews of Modern Physics. 47(3), 713-761(1975).

【16】Reed S A, Chvykov V, Kalintchenko G et al. Photonuclear fission with quasimonoenergetic electron beams from laser wakefields. Applied Physics Letters. 89(23), (2006).

【17】Yan Y H, Wu Y C, Zhao Z Q et al. Monte Carlo simulation study of positron generation in ultra-intense laser-solid interactions. Physics of Plasmas. 19(2), (2012).

【18】Chen L M, Zhang J, Li Y T et al. Effects of laser polarization on jet emission of fast electrons in femtosecond-laser plasmas. Physical Review Letters. 87(22), (2001).

【19】Tatarakis M, Davies J R, Lee P et al. Plasma formation on the front and rear of plastic targets due to high-intensity laser-generated fast electrons. Physical Review Letters. 81(5), 999-1002(1998).

【20】Tanimoto T, Habara H, Kodama R et al. Measurements of fast electron scaling generated by petawatt laser systems. Physics of Plasmas. 16(6), (2009).

【21】Chen H, Wilks S C, Kruer W L et al. Hot electron energy distributions from ultraintense laser solid interactions. Physics of Plasmas. 16(2), (2009).

【22】Phillips T W, Cable M D, Cowan T E et al. Diagnosing hot electron production by short pulse, high intensity lasers using photonuclear reactions. Review of Scientific Instruments. 70(1), 1213-1216(1999).

【23】Wilks S C, Kruer W L, Tabak M et al. Absorption of ultra-intense laser pulses. Physical Review Letters. 69(9), 1383-1386(1992).

【24】Compant la Fontaine A. Photon dose produced by a high-intensity laser on a solid target. Journal of Physics D: Applied Physics. 47(32), (2014).

【25】China Nuclear Data Center. The database of nuclear physics[2019-02-16]. http:∥www.nuclear.csdb.cn/pingjia.html. (0).
中国核数据中心. 核物理主题数据库[2019-02-16]. http:∥www.nuclear.csdb.cn/pingjia.html. (0).

【26】Qi W, Zhang X H, Zhang B et al. Enhanced photoneutron production by intense picoseconds laser interacting with gas-solid hybrid targets. Physics of Plasmas. 26(4), (2019).

引用该论文

Wei Qi,Shukai He,Yonghong Yan,Weimin Zhou,Yuqiu Gu. Numerical Simulation of Photoneutron Generation in Ultra-Intense Short Laser-Solid Interactions[J]. Chinese Journal of Lasers, 2019, 46(9): 0901007

齐伟,贺书凯,闫永宏,周维民,谷渝秋. 超短脉冲激光与固体靶作用产生光核中子的数值模拟研究[J]. 中国激光, 2019, 46(9): 0901007

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF