首页 > 论文 > 激光与光电子学进展 > 56卷 > 15期(pp:153001--1)


Surface-Enhanced Raman Spectroscopy of Mushroom Spores

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文


微生物在生态系统中具有重要的作用,所以鉴别微生物具有重要的意义。采用表面增强拉曼光谱(SERS)对雪松花粉(PML)、双色牛肝菌(BBP)孢子、小美牛肝菌(BSF)孢子和紫色粉孢牛肝菌孢子(TPS)进行鉴别研究。结果显示:雪松花粉的常规拉曼信号在1702,1680,1513,1382,1243,1011,793 cm -1处,表面增强之后在1698,1653,1592,1516,1403,1288,1210,813,562 cm -1出现明显的拉曼峰;三种牛肝菌孢子的常规拉曼未显示拉曼峰,雪松花粉、双色牛肝菌孢子、小美牛肝菌孢子和紫色粉孢牛肝菌孢子的表面增强拉曼光谱在1700~1100 cm -1差异明显。结果表明,利用SERS可以实现对雪松花粉、双色牛肝菌孢子、小美牛肝菌孢子和紫色粉孢牛肝菌孢子的鉴别。


Microorganisms play an important role in the ecosystem; thus, the identification of microorganisms is an important task. Herein, surface-enhanced Raman spectroscopy (SERS) is applied to identify pinus massoniana lamb pollen (PML), boletus bicolor peck (BBP) spores, boletus speciosus frost (BSF) spores, and tylopilus plumbeoviolaceus spores (TPS). Spectroscopy results indicate that, after the surface enhancement, the locations of the conventional Raman signal of PML are at 1702, 1680, 1513, 1382, 1243, 1011, and 793 cm -1, with observable Raman peaks at 1698, 1653, 1592, 1516, 1403, 1288, 1210, 813, and 562 cm -1. Three boletus spores identified via the conventional Raman spectroscopy do not exhibit any Raman peak, whereas the surface-enhanced Raman spectra of PML, BBP spores, BSF spores, and TPS are significantly different in the range of 1700-1100 cm -1. Experimental results validate that SERS can effectively identify PML, BBP spores, BSF spores, and TPS.








作者单位    点击查看

安冉:云南师范大学物理与电子信息学院, 云南 昆明 650500
欧全宏:云南师范大学物理与电子信息学院, 云南 昆明 650500
刘刚:云南师范大学物理与电子信息学院, 云南 昆明 650500
杨卫梅:云南师范大学物理与电子信息学院, 云南 昆明 650500
符致秋:云南师范大学物理与电子信息学院, 云南 昆明 650500
李建美:云南师范大学物理与电子信息学院, 云南 昆明 650500
时有明:曲靖师范学院物理与电子工程学院, 云南 曲靖 655011



【1】Hügler M, BOckle K, Eberhagen I et al. Detection and quantification of E. coli and coliform bacteria in water samples with a new method based on fluorescence in situ hybridisation. ∥Kay D, Fricker C. The significance of faecal indicators in water: a global perspective. Cambridge: Royal Society of Chemistry. 123-130(2012).

【2】Kenzaka T, Yamaguchi N, Utrarachkij F et al. Rapid identification and enumeration of antibiotic resistant bacteria in urban canals by microcolony-fluorescence in situ hybridization. Journal of Health Science. 52(6), 703-710(2006).

【3】Puppels G J, Otto C et al. . Studying single living cells and chromosomes by confocal Raman microspectroscopy. Nature. 347(6290), 301-303(1990).

【4】Williams A C. Edwards H G M. Fourier transform Raman spectroscopy of bacterial cell walls. Journal of Raman Spectroscopy. 25(7/8), 673-677(1994).

【5】Chadha S, Manoharan R, Moenne-Loccoz P et al. Comparison of the UV resonance Raman spectra of bacteria, bacterial cell walls, and ribosomes excited in the deep UV. Applied Spectroscopy. 47(1), 38-43(1993).

【6】Ngundi M M, Qadri S A, Wallace E V et al. Detection of deoxynivalenol in foods and indoor air using an array biosensor. Environmental Science & Technology. 40(7), 2352-2356(2006).

【7】Zajac A, Hanuza J and Dyminska L. Raman spectroscopy in determination of horse meat content in the mixture with other meats. Food Chemistry. 156, 333-338(2014).

【8】Haughey S A, Galvin-King P, Ho Y C et al. The feasibility of using near infrared and Raman spectroscopic techniques to detect fraudulent adulteration of chili powders with Sudan dye. Food Control. 48, 75-83(2015).

【9】Ozbalci B, Boyaci I H, Topcu A et al. Rapid analysis of sugars in honey by processing Raman spectrum using chemometric methods and artificial neural networks. Food Chemistry. 136(3/4), 1444-1452(2013).

【10】Nakashima S, Ogura T and Kitagawa T. Infrared and Raman spectroscopic investigation of the reaction mechanism of cytochrome c oxidase. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1847(1), 86-97(2015).

【11】Orelio C C. Beiboer S H W, Morsink M C, et al. Comparison of Raman spectroscopy and two molecular diagnostic methods for Burkholderia cepacia complex species identification. Journal of Microbiological Methods. 107, 126-132(2014).

【12】Gao Q, Liu Y, Li H et al. Comparison of several chemometric methods of libraries and classifiers for the analysis of expired drugs based on Raman spectra. Journal of Pharmaceutical and Biomedical Analysis. 94, 58-64(2014).

【13】Boiret M, Rutledge D N, Gorretta N et al. Application of independent component analysis on Raman images of a pharmaceutical drug product: pure spectra determination and spatial distribution of constituents. Journal of Pharmaceutical and Biomedical Analysis. 90, 78-84(2014).

【14】Li S X, Zhang Y J, Xu J F et al. Noninvasive prostate cancer screening based on serum surface-enhanced Raman spectroscopy and support vector machine. Applied Physics Letters. 105(9), (2014).

【15】Guo J, Rong Z, Xiao R et al. Application of surface-enhanced Raman spectroscopy in human serum. Military Medical Sciences. 40(4), 350-352(2016).
郭晶, 荣振, 肖瑞 等. 表面增强拉曼光谱在人类血清中的应用. 军事医学. 40(4), 350-352(2016).

【16】Guedes A, Ribeiro H, Fernandez-Gonzalez M et al. Pollen Raman spectra database: application to the identification of airborne pollen. Talanta. 119, 473-478(2014).

【17】Jia X X, Li J, Qin T et al. Current views on surface enhanced Raman spectroscopy in microbiology. Chinese Journal of Biotechnology. 31(5), 611-620(2015).
贾潇潇, 李晶, 秦天 等. 表面增强拉曼光谱技术在微生物鉴定中的应用进展. 生物工程学报. 31(5), 611-620(2015).

【18】Lin J Q, Ruan Q Y, Chen G N et al. Research progress of surface enhanced Raman spectroscopy for cancer detection. Laser & Optoelectronics Progress. 50(8), (2013).
林居强, 阮秋咏, 陈冠楠 等. 基于表面增强拉曼散射技术的癌症检测研究进展. 激光与光电子学进展. 50(8), (2013).

【19】Lee P C and Meisel D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. The Journal of Physical Chemistry. 86(17), 3391-3395(1982).

【20】Felix-Rivera H. Hernandez-Rivera S P. Raman spectroscopy techniques for the detection of biological samples in suspensions and as aerosol particles: a review. Sensing and Imaging: An International Journal. 13(1), 1-25(2012).

【21】Ivleva N P, Wagner M, Horn H et al. Towards a nondestructive chemical characterization of biofilm matrix by Raman microscopy. Analytical and Bioanalytical Chemistry. 393(1), 197-206(2009).

【22】Liu C and Yin Y. Inherent optical properties of pollen particles: a case study for the morning glory pollen. Optics Express. 24(2), A104-A113(2016).

【23】Yan B, Li B, Wen Z N et al. Label-free blood serum detection by using surface-enhanced Raman spectroscopy and support vector machine for the preoperative diagnosis of parotid gland tumors. BMC Cancer. 15, (2015).

【24】Yonzon C R, Haynes C L, Zhang X Y et al. A glucose biosensor based on surface-enhanced Raman scattering: improved partition layer, temporal stability, reversibility, and resistance to serum protein interference. Analytical Chemistry. 76(1), 78-85(2004).

【25】Movasaghi Z, Rehman S and Rehman I U. Raman spectroscopy of biological tissues. Applied Spectroscopy Reviews. 42(5), 493-541(2007).

【26】Sigurdsson S, Philipsen P A, Hansen L K et al. Detection of skin cancer by classification of Raman spectra. IEEE Transactions on Biomedical Engineering. 51(10), 1784-1793(2004).

【27】Vandenabeele P, Wehling B, Moens L et al. Analysis with micro-Raman spectroscopy of natural organic binding media and varnishes used in art. Analytica Chimica Acta. 407(1/2), 261-274(2000).

【28】Leroy M, Labbe J F, Ouellet M et al. A comparative study between human skin substitutes and normal human skin using Raman microspectroscopy. Acta Biomaterialia. 10(6), 2703-2711(2014).

【29】Hua X, Zhang G, Yang J W et al. Theory study and application of the BP-ANN method for power grid short-term load forecasting ZTE Communications. 2015(3), 2-5(0).


Ran An, Quanhong Ou, Gang Liu, Weimei Yang, Zhiqiu Fu, Jianmei Li, Youming Shi. Surface-Enhanced Raman Spectroscopy of Mushroom Spores[J]. Laser & Optoelectronics Progress, 2019, 56(15): 153001

安冉, 欧全宏, 刘刚, 杨卫梅, 符致秋, 李建美, 时有明. 蘑菇孢子的表面增强拉曼光谱研究[J]. 激光与光电子学进展, 2019, 56(15): 153001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF