首页 > 论文 > 激光与光电子学进展 > 56卷 > 15期(pp:152701--1)

压缩真空态通过分束器的纠缠特性研究

Entanglement Characteristics of Squeezed Vacuum State After Beam Splitter

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于分束器可产生纠缠的特性,提出基于分束器生成连续变量双模压缩态的方案,并求解纠缠条件。对于50∶50分束器模型,分析并提取相移影响因子后,基于量子态转换和Wigner函数分别分析量子态输出与输入相对压缩角和分束器相移影响因子之间的关系;利用段路明纠缠判据判断输出是否为纠缠态,并定义对数负值衡量输出纠缠度。结果表明,分束器相移影响因子和输入相对压缩角对输出纠缠的影响存在周期性,在半周期内输出表现为不相关到部分纠缠再到最大纠缠的变化;当且仅当在最大纠缠点处,继续增加输入压缩幅,纠缠程度继续增加。实验结果为单模压缩真空态经分束器产生最大纠缠态提供了思路。

Abstract

Herein, we investigate a scheme to generate continuous double-mode squeezed vacuum states based on a beam splitter by assuming that a beam splitter can cause entanglement, and the entangled conditions are solved. For a 50∶50 beam splitter, the phase shift influencing factor is analyzed and extracted. The relationship between the relative squeezing angle of quantum state output and input and the phase shift influencing factor is analyzed based on the quantum state conversion and the Wigner function. Subsequently, the Duan criterion is used to determine whether the output is entangled, and logarithmic negativity is defined for measuring the degree of entanglement. The results indicate the presence of a periodic effect in the entanglement characteristics of the outputs is due to the beam-splitter phase shift influencing factor and the relative squeezing angle provided as input; in a half-single pass, outputs are the processes associated with unrelated properties, partially entangled properties, and maximally entangled properties. Increasing the degree of squeezing provided as the input will cause an increase in output when the maximally entangled states are obtained as outputs. This study provides some concepts for using single-mode squeezed vacuum states to produce the maximally entangled states.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.152701

所属栏目:量子光学

基金项目:国家自然科学基金(61603414;61573372); 61573372);

收稿日期:2019-01-11

修改稿日期:2019-02-27

网络出版日期:2019-08-01

作者单位    点击查看

魏天丽:空军工程大学信息与导航学院, 陕西 西安 710077
吴德伟:空军工程大学信息与导航学院, 陕西 西安 710077
李响:空军工程大学信息与导航学院, 陕西 西安 710077
朱浩男:空军工程大学信息与导航学院, 陕西 西安 710077
王湘林:空军工程大学信息与导航学院, 陕西 西安 710077

联系人作者:吴德伟(wudewei74609@126.com)

备注:国家自然科学基金(61603414;61573372); 61573372);

【1】Loudon R and Knight P L. Squeezed light. Journal of Modern Optics. 34(6/7), 709-759(1987).

【2】Dodonov V V. ‘Nonclassical’ states in quantum optics: a ‘squeezed’ review of the first 75 years. Journal of Optics B: Quantum and Semiclassical Optics. 4(1), R1-R33(2002).

【3】Lakshmi P A and Agarwal G S. Photon-counting statistics of squeezed states in resonance fluorescence. Physical Review A. 29(4), 2260-2262(1984).

【4】Collett M J and Walls D F. Squeezing spectra for nonlinear optical systems. Physical Review A. 32(5), 2887-2892(1985).

【5】Walls D F. Squeezed states of light. Nature. 306(5939), 141-146(1983).

【6】Wang X, Chen S X, Wu D W et al. Quantum ranging scheme based on two-mode squeezing light. Acta Optica Sinica. 36(7), (2016).
王希, 陈树新, 吴德伟 等. 双模压缩光量子测距方案. 光学学报. 36(7), (2016).

【7】Sun H X, Liu K, Zhang J X et al. Quantum precision measurement based on squeezed light. Acta Physica Sinica. 64(23), (2015).
孙恒信, 刘奎, 张俊香 等. 基于压缩光的量子精密测量. 物理学报. 64(23), (2015).

【8】Zhang W H, Yang W H, Shi S P et al. Mode matching in preparation of squeezed field with high compressibility. Chinese Journal of Lasers. 44(11), (2017).
张文慧, 杨文海, 史少平 等. 高压缩度压缩态光场制备中的模式匹配. 中国激光. 44(11), (2017).

【9】Zhou C H, Zhang C C, Liu H B et al. Generation of temporal multimode squeezed states of femtosecond pulse light. Chinese Optics Letters. 15(9), (2017).

【10】Ye X M and Lu D M. Quantum properties of two-mode squeezed vacuum states excited by combination operators. Laser & Optoelectronics Progress. 55(1), (2018).
叶希梅, 卢道明. 算符组合激发双模压缩真空态的量子特性. 激光与光电子学进展. 55(1), (2018).

【11】Furusawa A, Sorensen J L, Braunstein S L et al. Unconditional quantum teleportation. Science. 282(5389), 706-709(1998).

【12】Menzel E P, di Candia R, Deppe F et al. . Path entanglement of continuous-variable quantum microwaves. Physical Review Letters. 109(25), (2012).

【13】Sakagami I, Wang X L, Takahashi K et al. Generalized two-way two-section dual-band Wilkinson power divider with two absorption resistors and its miniaturization. IEEE Transactions on Microwave Theory and Techniques. 59(11), 2833-2847(2011).

【14】Wang X L, Sakagami I, Takahashi K et al. A generalized dual-band Wilkinson power divider with parallel L, C, and R components. IEEE Transactions on Microwave Theory and Techniques. 60(4), 952-964(2012).

【15】Hoffmann E, Deppe F, Niemczyk T et al. A superconducting 180° hybrid ring coupler for circuit quantum electrodynamics. Applied Physics Letters. 97(22), (2010).

【16】Kim M S, Son W, Bu?ek V et al. Entanglement by a beam splitter: nonclassicality as a prerequisite for entanglement. Physical Review A. 65(3), (2002).

【17】Lei B, Feng Y and Wei L A. Phase-shift characteristic of beam splitter in coherent combining of laser beam with an interference compound cavity. Acta Photonica Sinica. 38(6), 1322-1326(2009).
雷兵, 冯莹, 魏立安. 干涉型复合腔激光束相干合成中分束器的相移特性研究. 光子学报. 38(6), 1322-1326(2009).

【18】Wigner E. On the quantum correction for thermodynamic equilibrium. Physical Review. 40(5), 749-759(1932).

【19】Vogel K and Risken H. Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase. Physical Review A. 40(5), 2847-2849(1989).

【20】Fan H Y and Zaidi H R. Application of IWOP technique to the generalized Weyl correspondence. Physics Letters A. 124(6/7), 303-307(1987).

【21】Fan H Y and Guo G C. A new formalism of the squeeze operator and various representations and properties of the squeezed state. Acta Optica Sinica. 5(9), 804-811(1985).
范洪义, 郭光灿. 压缩算符的新形式与压缩态的各种表示和性质. 光学学报. 5(9), 804-811(1985).

【22】Flurin E. The Josephson mixer: a Swiss army knife for microwave quantum optics. Paris: ècole Normale SupéRieure. 87-95(2014).

【23】Peres A. Separability criterion for density matrices. Physical Review Letters. 77(8), 1413-1415(1996).

【24】Shchukin E and Vogel W. Inseparability criteria for continuous bipartite quantum states. Physical Review Letters. 95(23), (2005).

【25】Menzel E P. Propagating quantum microwaves: dual-path state reconstruction and path entanglement. München: Technische Universit?t München. 104-105(2012).

【26】Cavalcanti D. Brand?o F G S L, Terra Cunha M O. Are all maximally entangled states pure?. Physical Review A. 72(4), (2005).

【27】Horodecki M, Horodecki P and Horodecki R. Separability of mixed states: necessary and sufficient conditions. Physics Letters A. 223(1/2), 1-8(1996).

【28】Hyllus P, Gühne O, Bru? D et al. Relations between entanglement witnesses and Bell inequalities. Physical Review A. 72(1), (2005).

【29】Duan L M, Giedke G, Cirac J I et al. Inseparability criterion for continuous variable systems. Physical Review Letters. 84(12), 2722-2725(2000).

【30】Adesso G and Illuminati F. Gaussian measures of entanglement versus negativities: ordering of two-mode Gaussian states. Physical Review A. 72(3), (2005).

引用该论文

Tianli Wei, Dewei Wu, Xiang Li, Haonan Zhu, Xianglin Wang. Entanglement Characteristics of Squeezed Vacuum State After Beam Splitter[J]. Laser & Optoelectronics Progress, 2019, 56(15): 152701

魏天丽, 吴德伟, 李响, 朱浩男, 王湘林. 压缩真空态通过分束器的纠缠特性研究[J]. 激光与光电子学进展, 2019, 56(15): 152701

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF