首页 > 论文 > 激光与光电子学进展 > 56卷 > 15期(pp:152501--1)

基于非对称纳米颗粒阵列的垂直与平行表面晶格共振

Formation of Orthogonal and Parallel Surface-Lattice Resonances with Asymmetric Nanoparticle Array

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

在贵金属纳米颗粒阵列中所形成的表面晶格共振能够有效抑制体系辐射损耗、提高共振品质因子、增大局域场强,已被广泛用于设计高性能微纳光子器件。实现垂直与平行表面晶格共振的同时激发对阵列结构光学响应的调制及应用具有重要意义。本文设计了由L-形纳米天线构成的阵列结构,计算了成键模式和反成键模式与瑞利异常耦合的光学响应,获得了在消光谱上能够同时形成上述两种表面晶格共振的结论。结果表明,其成键与反成键局域共振模式都可以实现与瑞利异常的耦合,从而激发垂直与平行表面晶格共振。这些特性使得这种非对称纳米颗粒阵列在微纳光子器件的设计方面具有重要的应用价值。

Abstract

Surface-lattice resonances generated by using noble-metallic nanoparticle arrays can effectively suppress radiation loss, thereby improving the resonance quality factor and increasing localized field intensity. Surface-lattice resonances have been widely used for designing high-performance micro-nano photonic devices. Realizing the simultaneous excitation of orthogonal and parallel surface-lattice resonances is crucial for manipulating the collective responses of nanoparticle arrays, which is also useful for practical applications. Herein, we design an array structure composed of L-shaped nanoantennas. Furthermore, we investigate the optical response caused by the coupling between the Rayleigh anomaly and bonding/antibonding modes. We find that the two kinds of surface-lattice resonances can be excited simultaneously in extinction spectra. Calculation results reveal that the bonding/antibonding modes can be used to couple with Rayleigh anomaly, thereby leading to the formation of orthogonal and parallel surface-lattice resonances. These properties make asymmetric nanoparticle arrays become promising platforms for designing micro-nano photonic devices.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.152501

所属栏目:光电子学

基金项目:山西省国际合作基金(17101952);

收稿日期:2019-01-31

修改稿日期:2019-03-07

网络出版日期:2019-08-01

作者单位    点击查看

侯浩杰:新型传感器与智能控制教育部重点实验室, 山西 太原 030024
刘钧妍:新型传感器与智能控制教育部重点实验室, 山西 太原 030024太原理工大学物理与光电工程学院, 山西 太原 030024
肖博文:太原理工大学物理与光电工程学院, 山西 太原 030024
朱明琦:太原理工大学物理与光电工程学院, 山西 太原 030024
李孟春:太原理工大学物理与光电工程学院, 山西 太原 030024

联系人作者:李孟春(limmc163@163.com)

备注:山西省国际合作基金(17101952);

【1】Kelly K L, Coronado E, Zhao L L et al. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. The Journal of Physical Chemistry B. 107(3), 668-677(2003).

【2】Atwater H A and Polman A. Plasmonics for improved photovoltaic devices. Nature Materials. 9(3), 205-213(2010).

【3】Fu Y H, Zhang J B, Yu Y F et al. Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures. ACS Nano. 6(6), 5130-5137(2012).

【4】Guo T. Review on plasmonic optical fiber grating biosensors. Acta Optica Sinica. 38(3), (2018).
郭团. 等离子体共振光纤光栅生物传感器综述. 光学学报. 38(3), (2018).

【5】Kessentini S and Barchiesi D. D’Andrea C, et al. Gold dimer nanoantenna with slanted gap for tunable LSPR and improved SERS. The Journal of Physical Chemistry C. 118(6), 3209-3219(2014).

【6】Shi Z D, Zhao H F, Liu J L et al. Design of a metallic waveguide all-optical switch based on surface plasmon polaritons. Acta Optica Sinica. 35(2), (2015).
石振东, 赵海发, 刘建龙 等. 基于表面等离激元的金属波导全光开关设计. 光学学报. 35(2), (2015).

【7】Lin R, Qian W C, Shang Y P et al. Dual-channel all-optical switch based on plasmonic demultiplexer structure. Laser & Optoelectronics Progress. 55(2), (2018).
林蓉, 钱文超, 商云鹏 等. 基于表面等离激元解复用器结构的双通道全光开关. 激光与光电子学进展. 55(2), (2018).

【8】Liu F and Zhang K L. Fano resonances in metallic nanorod oligomer with transverse excitation. Laser & Optoelectronics Progress. 56(1), (2019).
刘菲, 张楷亮. 横向激励下金属纳米棒聚合体的Fano共振. 激光与光电子学进展. 56(1), (2019).

【9】Huang Y H and Xue B P. Research of mutiple Fano resonances in plasmonic octamer clusters. Laser & Optoelectronics Progress. 52(6), (2015).
黄运欢, 薛保平. 等离子体八聚体中多重法诺共振现象的研究. 激光与光电子学进展. 52(6), (2015).

【10】Liu R, Shi J H, Plum E et al. Tuning Fano resonances in a planar metamaterial. Acta Physica Sinica. 61(15), (2012).
刘冉, 史金辉, Plum E 等. 基于平面超材料的Fano谐振可调谐研究. 物理学报. 61(15), (2012).

【11】Guo R, Hakala T K and T?rm? P. Geometry dependence of surface lattice resonances in plasmonic nanoparticle arrays. Physical Review B. 95(15), (2017).

【12】Auguié B and Barnes W L. Collective resonances in gold nanoparticle arrays. Physical Review Letters. 101(14), (2008).

【13】Gao H. McMahon J M, Lee M H, et al. Rayleigh anomaly-surface plasmon polariton resonances in palladium and gold subwavelength hole arrays. Optics Express. 17(4), 2334-2340(2009).

【14】Zou S L, Janel N and Schatz G C. Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. The Journal of Chemical Physics. 120(23), 10871-10875(2004).

【15】Zou S L and Schatz G C. Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays. The Journal of Chemical Physics. 121(24), 12606-12612(2004).

【16】Chu Y Z, Schonbrun E, Yang T et al. Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays. Applied Physics Letters. 93(18), (2008).

【17】Vecchi G, Giannini V and Gómez Rivas J. Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas. Physical Review Letters. 102(14), (2009).

【18】Kravets V G, Schedin F, Kabashin A V et al. Sensitivity of collective plasmon modes of gold nanoresonators to local environment. Optics Letters. 35(7), 956-958(2010).

【19】Kravets V G, Schedin F and Grigorenko A N. Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles. Physical Review Letters. 101(8), (2008).

【20】Baur S, Sanders S and Manjavacas A. Hybridization of lattice resonances. ACS Nano. 12(2), 1618-1629(2018).

【21】Wang D Q, Yang A K, Hryn A J et al. Superlattice plasmons in hierarchical Au nanoparticle arrays. ACS Photonics. 2(12), 1789-1794(2015).

【22】Humphrey A D, Meinzer N, Starkey T A et al. Surface lattice resonances in plasmonic arrays of asymmetric disc dimers. ACS Photonics. 3(4), 634-639(2016).

【23】Lee S C. Brueck S R J. Plasmonic interference in superstructured metal photonic crystals. ACS Photonics. 4(10), 2396-2401(2017).

【24】Wang D Q, Yang A K, Wang W J et al. Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices. Nature Nanotechnology. 12(9), 889-894(2017).

【25】Vecchi G and Giannini V. 80(20):. 201401(R). (2009).

【26】Lin L H and Zheng Y B. Multiple plasmonic-photonic couplings in the Au nanobeaker arrays: enhanced robustness and wavelength tunability. Optics Letters. 40(9), 2060-2063(2015).

【27】Lin L H and Zheng Y B. Engineering of parallel plasmonic-photonic interactions for on-chip refractive index sensors. Nanoscale. 7(28), 12205-12214(2015).

【28】Vitrey A, Aigouy L, Prieto P et al. Parallel collective resonances in arrays of gold nanorods. Nano Letters. 14(4), 2079-2085(2014).

【29】Liu S D, Qi X, Zhai W C et al. Polarization state-based refractive index sensing with plasmonic nanostructures. Nanoscale. 7(47), 20171-20179(2015).

【30】Johnson P B and Christy R W. Optical constants of the noble metals. Physical Review B. 6(12), 4370-4379(1972).

引用该论文

Haojie Hou, Junyan Liu, Bowen Xiao, Mingqi Zhu, Mengchun Li. Formation of Orthogonal and Parallel Surface-Lattice Resonances with Asymmetric Nanoparticle Array[J]. Laser & Optoelectronics Progress, 2019, 56(15): 152501

侯浩杰, 刘钧妍, 肖博文, 朱明琦, 李孟春. 基于非对称纳米颗粒阵列的垂直与平行表面晶格共振[J]. 激光与光电子学进展, 2019, 56(15): 152501

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF