首页 > 论文 > 光学学报 > 40卷 > 18期(pp:1804001--1)

倍增层厚度对In0.53Ga0.47As/InP雪崩二极管器件特性的影响

Effect of Multiplication Layer Thickness on Device Properties of In0.53Ga0.47As/InP Avalanche Photodiode

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

利用Zn扩散方法制备了倍增层厚度为1.5,1.0,0.8 μm的In0.53Ga0.47As/InP雪崩光电二极管(APDs),研究了该器件特性。随着倍增层厚度的增加,器件的贯穿电压和击穿电压均呈现增大趋势。基于Silvaco模拟计算了APD器件的倍增层厚度对电场强度、电流特性、击穿电压与贯穿电压的影响规律,结果表明,随着倍增层厚度的增加,倍增层内电场强度减小,贯穿电压和击穿电压同时增大,与实验结果吻合。进一步研究发现,当倍增层的厚度小于0.8 μm时,击穿电压随着倍增层厚度的增加会先减小后增大,贯穿电压则会单调增大。

Abstract

We investigate the device properties of In0.53Ga0.47As/InP avalanche photodiodes (APDs) with different multiplication layer thicknesses of 1.5, 1.0 and 0.8 μm by the Zinc diffusion method. The punch-through voltage and the breakdown voltage increase with the increase of the multiplication layer thickness. On the basis of the simulation by the Silvaco software, the influences of the multiplication layer thickness on the electric field, current-voltage characteristics, breakdown voltages and punch-through voltages are studied. As the multiplication layer thickness increases, the electric field intensity decreases, in contrast, both of the punch-through and breakdown voltages increase,which are consistent with the experimental results. A further study shows that when the multiplication layer thickness is smaller than 0.8 μm and as the multiplication layer thickness increases, the breakdown voltage first decreases and then increases, while the punch-through voltage monotonically increases.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O436

DOI:10.3788/AOS202040.1804001

所属栏目:探测器

基金项目:国家重点研发计划、国家自然科学基金、江苏省重点研发计划、中国科学院科技服务网络计划项目 、纳米所自有资金项目;

收稿日期:2020-05-25

修改稿日期:2020-06-11

网络出版日期:2020-09-01

作者单位    点击查看

王航:中国科学技术大学纳米仿生学院, 安徽 合肥 230026中国科学院苏州纳米技术与纳米仿生研究所纳米器件与应用重点实验室, 江苏 苏州 215123
袁正兵:贵州大学大数据与信息工程学院, 贵州 贵阳 550025
谭明:中国科学院苏州纳米技术与纳米仿生研究所纳米器件与应用重点实验室, 江苏 苏州 215123
顾宇强:中国科学院苏州纳米技术与纳米仿生研究所纳米器件与应用重点实验室, 江苏 苏州 215123
吴渊渊:中国科学院苏州纳米技术与纳米仿生研究所纳米器件与应用重点实验室, 江苏 苏州 215123
肖清泉:贵州大学大数据与信息工程学院, 贵州 贵阳 550025
陆书龙:中国科学院苏州纳米技术与纳米仿生研究所纳米器件与应用重点实验室, 江苏 苏州 215123

联系人作者:陆书龙(sllu2008@sinano.ac.cn)

备注:国家重点研发计划、国家自然科学基金、江苏省重点研发计划、中国科学院科技服务网络计划项目 、纳米所自有资金项目;

【1】Ding Y X, Li Y F, Liu H B, et al. Photon counting experiment based on InGaAs detector in daylight [J]. Chinese Journal of Lasers. 2018, 45(11): 1104003.
丁宇星, 李永富, 刘鸿彬, 等. 基于InGaAs探测器的日光条件光子计数实验 [J]. 中国激光. 2018, 45(11): 1104003.

【2】Yuan Z B, Xiao Q Q, Yang W X, et al. Response and electrical characteristics of In0.53Ga0.47As/InP avalanche photodiode [J]. Acta Photonica Sinica. 2018, 47(3): 0304002.
袁正兵, 肖清泉, 杨文献, 等. In0.53Ga0.47As/InP雪崩光电二极管响应及电学特性 [J]. 光子学报. 2018, 47(3): 0304002.

【3】van Veen D T, Houtsma V E, Gnauck A H, et al. Demonstration of 40-Gb/s TDM-PON over 42-km with 31 dB optical power budget using an APD-based receiver [J]. Journal of Lightwave Technology. 2015, 33(8): 1675-1680.

【4】Chen J J, Cui J C, Liu J N, et al. Correction technology of HgCdTe short-wave infrared focal plane arrays [J]. Acta Optica Sinica. 2019, 39(2): 0204001.
陈建军, 崔继承, 刘嘉楠, 等. HgCdTe短波红外焦平面探测器校正技术 [J]. 光学学报. 2019, 39(2): 0204001.

【5】Lin H Y, Xie H, Wang Y, et al. Modeling of InAsSbP blocking barrier grown by liquid-phase epitaxy in InAs-based infrared photodetector [J]. Acta Optica Sinica. 2019, 39(5): 0504002.
林虹宇, 谢浩, 王洋, 等. 基于液相外延的InAs基红外探测器InAsSbP阻挡层的仿真 [J]. 光学学报. 2019, 39(5): 0504002.

【6】Zhao Y L. Impact ionization in absorption, grading, charge, and multiplication layers of InP/InGaAs SAGCM APDs with a thick charge layer [J]. IEEE Transactions on Electron Devices. 2013, 60(10): 3493-3499.

【7】Pitts O J, Hisko M, Benyon W, et al. Optimization of MOCVD-diffused p-InP for planar avalanche photodiodes [J]. Journal of Crystal Growth. 2014, 393: 85-88.

【8】Ma Y J, Zhang Y G, Gu Y, et al. Low operating voltage and small gain slope of InGaAs APDs with p-type multiplication layer [J]. IEEE Photonics Technology Letters. 2015, 27(6): 661-664.

【9】Clark W R, Davis A, Roland M, et al. A 1 cm/spl times/1 cm In/sub 0.53/Ga/sub 0.47/As-In/sub 0.52/Al/sub 0.48/As avalanche photodiode array [J]. IEEE Photonics Technology Letters. 2006, 18(1): 19-21.

【10】Chen H, Xiao Q Q, Lu S L, et al. Simulation on the In0.53Ga0.47As/InP infrared detectors by silvaco-TCAD [J]. Low Temperature Physical Letters. 2018, 1-7.
陈豪, 肖清泉, 陆书龙, 等. 基于silvaco-TCAD的In0.53Ga0.47As/InP红外探测器的仿真 [J]. 低温物理学报. 2018, 1-7.

【11】Acerbi F, Tosi A, Zappa F. Dark count rate dependence on bias voltage during gate-off in InGaAs/InP single-photon avalanche diodes [J]. IEEE Photonics Technology Letters. 2013, 25(18): 1832-1834.

【12】Akiba M, Tsujino K, Sasaki M. Ultrahigh-sensitivity single-photon detection with linear-mode silicon avalanche photodiode [J]. Optics Letters. 2010, 35(15): 2621-2623.

【13】Kleinow P, Rutz F, Aidam R, et al. Experimental investigation of the charge-layer doping level in InGaAs/InAlAs avalanche photodiodes [J]. Infrared Physics & Technology. 2015, 71: 298-302.

【14】van Gurp G J, van Dongen T, Fontijn G M, et al. Interstitial and substitutional Zn in InP and InGaAsP [J]. Journal of Applied Physics. 1989, 65(2): 553-560.

【15】Maruyama T, Narusawa F, Kudo M, et al. Development of a near-infrared photon-counting system using an InGaAs avalanche photodiode [J]. Optical Engineering. 2000, 41(2): 138-139.

【16】Zhu M, Chen J, Lü J B, et al. Optimization of p-i-n InP/In0.53Ga0.47As/InP photodetector [J]. Acta Photonica Sinica. 2016, 45(1): 0104004.
朱敏, 陈俊, 吕加兵, 等. p-i-nInP/In0.53Ga0.47As/InP探测器结构优化 [J]. 光子学报. 2016, 45(1): 0104004.

引用该论文

Wang Hang,Yuan Zhengbing,Tan Ming,Gu Yuqiang,Wu Yuanyuan,Xiao Qingquan,Lu Shulong. Effect of Multiplication Layer Thickness on Device Properties of In0.53Ga0.47As/InP Avalanche Photodiode[J]. Acta Optica Sinica, 2020, 40(18): 1804001

王航,袁正兵,谭明,顾宇强,吴渊渊,肖清泉,陆书龙. 倍增层厚度对In0.53Ga0.47As/InP雪崩二极管器件特性的影响[J]. 光学学报, 2020, 40(18): 1804001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF