首页 > 论文 > 中国激光 > 47卷 > 11期(pp:1102005--1)

高功率光纤激光深熔焊接小孔的形貌特征

Keyhole Morphological Characteristics in High-Power Deep Penetration Fiber Laser Welding

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

采用高功率光纤激光对铜铪合金和低碳钢进行焊接,基于熔池快速凝固保留小孔法对比研究了小孔的形貌特征。结果表明:两种材料中均可保留小孔,孔口直径明显比光斑直径大;在铜铪合金中,孔口形貌呈现为大小圆环相交的“葫芦”状,位于焊接前方的小圆环直径与光斑直径相当,大圆环的直径在毫米量级;在低碳钢中可保留小孔的激光出光时间极短,其熔池凝固时间较长,且仅保留了小孔的大圆环区域。进一步的分析表明,焊接过程中的孔口形貌可分为激光直接作用区(直径与光斑直径相当)和蒸气压力维持区(直径在毫米量级);在数值模拟中构建激光焊接热源模型时应参考小孔的形貌特征。

Abstract

In this study, the Cu-Hf alloy and low carbon steel are respectively welded using a high-power fiber laser. The morphological characteristics of keyholes obtained by freezing and preserving the keyholes in a molten pool are compared. The results show that the keyholes can be retained in both materials, and the diameter of a keyhole is obviously greater than that of a spot. The shape of the keyhole retained in the Cu-Hf alloy is similar to that of a “gourd” with the intersection of big and small rings. The diameter of the small ring located in front of the welding direction is equivalent to that of the spot, and the diameter of the large ring is in the order of a millimeter. In low carbon steel, the laser output time to retain a keyhole is very short, the solidation time of the molten pool is long, and only the large circle area of the keyhole can be retained. Further analysis shows that a keyhole morphology can be divided into two parts: the laser direct-action area and vapor pressure maintaining area. In numerical simulations, the morphological characteristics of a keyhole must be considered when building a suitable heat source model for laser welding.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TG456.7

DOI:10.3788/CJL202047.1102005

所属栏目:激光制造

基金项目:国家自然科学基金面上项目、北京市教委科技计划一般项目;

收稿日期:2020-05-26

修改稿日期:2020-07-02

网络出版日期:2020-11-01

作者单位    点击查看

赵乐:北京工业大学材料与制造学部激光工程研究院, 高功率及超快激光先进制造实验室, 北京 100124
曹政:北京工业大学材料与制造学部激光工程研究院, 高功率及超快激光先进制造实验室, 北京 100124
邹江林:北京工业大学材料与制造学部激光工程研究院, 高功率及超快激光先进制造实验室, 北京 100124
韩雪:北京工业大学材料与制造学部激光工程研究院, 高功率及超快激光先进制造实验室, 北京 100124
肖荣诗:北京工业大学材料与制造学部激光工程研究院, 高功率及超快激光先进制造实验室, 北京 100124

联系人作者:邹江林(zoujianglin1@163.com)

备注:国家自然科学基金面上项目、北京市教委科技计划一般项目;

【1】Li M, Zhang W, Hua X M, et al. Investigation of plasma and metal transfer dynamic behavior during fiber laser GMAW-P hybrid welding [J]. Chinese Journal of Lasers. 2017, 44(4): 0402008.
李敏, 张旺, 华学明, 等. 光纤激光与GMAW-P复合焊接等离子体及熔滴过渡动态特征研究 [J]. 中国激光. 2017, 44(4): 0402008.

【2】Ren Y, Wu Q, Zou J L, et al. Real-time monitoring of coaxial protection fiber laser welding of austenitic stainless steels [J]. Chinese Journal of Lasers. 2017, 44(5): 0502003.
任勇, 武强, 邹江林, 等. 奧氏体不锈钢光纤激光同轴保护焊接的实时监测 [J]. 中国激光. 2017, 44(5): 0502003.

【3】Luo Y, Tang X H, Lu F G, et al. Effect of subatmospheric pressure on plasma plume in fiber laser welding [J]. Journal of Materials Processing Technology. 2015, 215: 219-224.Luo Y, Tang X H, Lu F G, et al. Effect of subatmospheric pressure on plasma plume in fiber laser welding [J]. Journal of Materials Processing Technology. 2015, 215: 219-224.

【4】Gao M, Chen C, Hu M, et al. Characteristics of plasma plume in fiber laser welding of aluminum alloy [J]. Applied Surface Science. 2015, 326: 181-186.

【5】Gen Y C, Fei C, Cong Z, et al. Welding defect suppression of stainless steel thick plate joint by 10-kW level laser welding [J]. Applied Laser. 2018, 38(2): 207-214.

【6】Wang L D, Li M, Zou J L, et al. Multiple imaging characteristics of plasma in laser-tungsten inert gas arc hybrid welding [J]. Chinese Journal of Lasers. 2019, 46(3): 0302008.
王利达, 李敏, 邹江林, 等. 激光-钨极稀有气体电弧复合焊接等离子体的多重成像特征 [J]. 中国激光. 2019, 46(3): 0302008.

【7】Cui H C, Lu F G, Tang X H, et al. Experimental research on fluidity of laser welded molten pool [J]. Chinese Journal of Lasers. 2011, 38(6): 0603004.
崔海超, 芦凤桂, 唐新华, 等. 激光焊接熔池流动性试验研究 [J]. 中国激光. 2011, 38(6): 0603004.

【8】Xia S Q, He J J, Wang W, et al. Simulation of three-dimensional transient behavior of molten pool in laser deep penetration welding [J]. Chinese Journal of Lasers. 2016, 43(11): 1102004.
夏胜全, 何建军, 王巍, 等. 激光深熔焊熔池三维瞬态行为数值模拟 [J]. 中国激光. 2016, 43(11): 1102004.

【9】Kim J, Oh S, Ki H. A study of keyhole geometry in laser welding of zinc-coated and uncoated steels using a coaxial observation method [J]. Journal of Materials Processing Technology. 2015, 225: 451-462.

【10】Ha N. Experimental study on characterisation behavior of keyhole during high power fiber laser deep penetration welding [D]. Beijing: Beijing University of Technology. 2018.
哈纳. 高功率光纤激光深熔焊接小孔特性行为实验研究 [D]. 北京: 北京工业大学. 2018.

【11】Kawahito Y, Mizutani M, Katayama S. Elucidation of high-power fibre laser welding phenomena of stainless steel and effect of factors on weld geometry [J]. Journal of Physics D. 2007, 40(19): 5854-5859.

【12】Zhou M L. Study on temperature field of molten pool in laser welding of low carbon steel [D]. Changchun: Changchun University of Science and Technology. 2014.
周明亮. 激光焊接低碳钢的熔池温度场研究 [D]. 长春: 长春理工大学. 2014.

【13】Wang H Z, Zou Y. Microscale interaction between laser and metal powder in powder-bed additive manufacturing: conduction mode versus keyhole mode [J]. International Journal of Heat and Mass Transfer. 2019, 142: 118473.Wang H Z, Zou Y. Microscale interaction between laser and metal powder in powder-bed additive manufacturing: conduction mode versus keyhole mode [J]. International Journal of Heat and Mass Transfer. 2019, 142: 118473.

【14】Luo M, Shin Y C. Vision-based weld pool boundary extraction and width measurement during keyhole fiber laser welding [J]. Optics and Lasers in Engineering. 2015, 64: 59-70.

【15】Zhang Y. Simulation of keyhole effect in laser deep penetration welding based on “sandwich” new method [D]. Changsha: Hunan University. 2005.
张屹. 基于“三明治”新方法的激光深熔焊接小孔效应的模拟研究 [D]. 长沙: 湖南大学. 2005.

【16】He S, Chen H, Cai C, et al. Influence of He-Ar mixed shielding gas on laser-MIG hybrid welding characteristic of aluminum alloys [J]. Chinese Journal of Lasers. 2018, 45(12): 1202005.
何双, 陈辉, 蔡创, 等. 氦-氩混合保护气体对铝合金激光-MIG复合焊接特性的影响 [J]. 中国激光. 2018, 45(12): 1202005.

【17】Zou J L, Ha N, Xiao R S, et al. Interaction between the laser beam and keyhole wall during high power fiber laser keyhole welding [J]. Optics Express. 2017, 25(15): 17650-17656.

【18】Matsunawa A, Semak V. The simulation of front keyhole wall dynamics during laser welding [J]. Journal of Physics D. 1997, 30(5): 798-809.

【19】Chen X, Pang S Y, Chen W D, et al. C]∥The 18th National Welding Academic Conference of Welding Society of China Mechanical Engineering Society. [S.l.:s.n.]. 2013.
陈鑫, 庞盛永, 陈伟东, 等. 出版者不详]: , 2013.

【20】Zhao L, Han X, Zou J L, et al. Experimental study on formation process of keyhole during fiber laser deep penetration welding [J]. Laser & Optoelectronics Progress. 2020, 59(7): 071402.
赵乐, 韩雪, 邹江林, 等. 光纤激光深熔焊接小孔形成过程的实验研究 [J]. 激光与光电子学进展. 2020, 59(7): 071402.

引用该论文

Zhao Le,Cao Zheng,Zou Jinglin,Han Xue,Xiao Rongshi. Keyhole Morphological Characteristics in High-Power Deep Penetration Fiber Laser Welding[J]. Chinese Journal of Lasers, 2020, 47(11): 1102005

赵乐,曹政,邹江林,韩雪,肖荣诗. 高功率光纤激光深熔焊接小孔的形貌特征[J]. 中国激光, 2020, 47(11): 1102005

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF