首页 > 论文 > 激光与光电子学进展 > 56卷 > 18期(pp:181008--1)

小波变换和分数阶积分结合的OCT图像去噪算法

Optical Coherence Tomography Image Denoising Algorithm Based on Wavelet Transform and Fractional Integral

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

通过对光学相干层析(OCT)系统中的噪声源进行分析,提出了一种将小波变换和分数阶积分结合的OCT图像去噪方法。先将OCT图像进行小波分解,获得不同频带的子图像。将低频近似图像保持不变,对水平、垂直和对角三个方向的高频细节图像采用三种改进的分数阶积分Tiansi模板进行滤波,最后将低频近似图像与三个分数阶积分滤波后的高频细节图像合成,得到去噪后的图像。实验结果表明;该算法在有效降低OCT图像散斑噪声的同时,尽可能地保留了图像的细节;相比经典的去噪算法和单一的分数阶积分算法,本文算法的去噪效果较好。

Abstract

Optical coherence tomography (OCT) is affected by speckle noise, which affects the analysis of the OCT images and their diagnostic utility. Herein, we propose an OCT image denoising method based on the wavelet transform and fractional integral by analyzing the noise sources in the OCT system. First, the OCT image is decomposed into various frequency sub-band images via the wavelet transform. Further, the high-frequency sub-band images are filtered in the horizontal, vertical, and angular directions using three improved fractional integral Tiansi templates without changing the low-frequency approximation image. Finally, the denoised image is obtained by composing three high-frequency detail images with fractional integral filtering and the low-frequency approximation image. The experimental results demonstrate that the proposed algorithm can effectively reduce the speckle noise in OCT images while maintaining the detail in the image; the proposed method exhibits a better denoising effect than the classical filtering methods and the single fractional integral algorithm.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.181008

所属栏目:图像处理

基金项目:国家自然科学基金青年科学基金、上海市自然科学基金、上海市科委产学研医项目;

收稿日期:2019-03-13

修改稿日期:2019-04-10

网络出版日期:2019-09-01

作者单位    点击查看

张晨曦:上海理工大学医疗器械与食品学院, 上海 200093
陈明惠:上海理工大学医疗器械与食品学院, 上海 200093
王帆:上海理工大学医疗器械与食品学院, 上海 200093
高乃珺:上海理工大学医疗器械与食品学院, 上海 200093
郑刚:上海理工大学医疗器械与食品学院, 上海 200093

联系人作者:陈明惠(cmhui.43@163.com)

备注:国家自然科学基金青年科学基金、上海市自然科学基金、上海市科委产学研医项目;

【1】Liu J Y, Zhang C Y, Tang X Y et al. Research status and prospect of endoscopic OCT. Laser & Optoelectronics Progress. 52(10), (2015).
刘景宇, 张春雨, 唐晓英 等. OCT内窥镜的研究现状与展望. 激光与光电子学进展. 52(10), (2015).

【2】Chen Y, Li Z L, Nan N et al. Wavelength misalignment analysis and spectral calibration for Fourier domain polarization-sensitive optical coherence tomography. Chinese Journal of Lasers. 45(2), (2018).
陈艳, 李中梁, 南楠 等. 偏振频域OCT系统光谱错位分析及光谱校准. 中国激光. 45(2), (2018).

【3】He Q Y, Li Z L, Wang X Z et al. Automated retinal layer segmentation based on optical coherence tomographic images. Acta Optica Sinica. 36(10), (2016).
贺琪欲, 李中梁, 王向朝 等. 基于光学相干层析成像的视网膜图像自动分层方法. 光学学报. 36(10), (2016).

【4】Xu M J, Yang J Z, Zhao D Z et al. An image-enhancement method based on variable-order fractional differential operators. Bio-Medical Materials and Engineering. 26(S1), S1325-S1333(2015).

【5】Rogowska J and Brezinski M E. Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images. Physics in Medicine and Biology. 47(4), 641-655(2002).

【6】Baghaie A. D''''Souza R M, Yu Z Y. Sparse and low rank decomposition based batch image alignment for speckle reduction of retinal OCT images. [C]∥2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), April 16-19, 2015, New York, USA. New York: IEEE. 226-230(2015).

【7】Schmitt J M, Xiang S H and Yung K M. Speckle in optical coherence tomography. Journal of Biomedical Optics. 4(1), 95-105(1999).

【8】Thapa D, Raahemifar K and Lakshminarayanan V. Reduction of speckle noise from optical coherence tomography images using multi-frame weighted nuclear norm minimization method. Journal of Modern Optics. 62(21), 1856-1864(2015).

【9】Duan J M, Lu W Q, Tench C et al. Denoising optical coherence tomography using second order total generalized variation decomposition. Biomedical Signal Processing and Control. 24, 120-127(2016).

【10】Sudeep P V, Issac Niwas S, Palanisamy P et al. Enhancement and bias removal of optical coherence tomography images: an iterative approach with adaptive bilateral filtering. Computers in Biology and Medicine. 71, 97-107(2016).

【11】Cai X O and Ni X J. Study on reduction of speckle noise in reconstructed image of digital hologram. Laser & Optoelectronics Progress. 50(5), (2013).
蔡晓鸥, 倪小静. 数字全息再现像散斑噪声消除的研究. 激光与光电子学进展. 50(5), (2013).

【12】Iftimia N, Bouma B E and Tearney G J. Speckle reduction in optical coherence tomography by “path length encoded” angular compounding. Journal of Biomedical Optics. 8(2), 260-263(2003).

【13】J?rgensen T M, Thrane L, Mogensen M et al. Speckle reduction in optical coherence tomography images of human skin by a spatial diversity method. [C]∥Optical Coherence Tomography and Coherence Techniques Ⅲ, June 17-21, 2007, Munich, Germany. Washington, D.C.: OSA. 6627_22, (2007).

【14】Mayer M A, Borsdorf A, Wagner M et al. Wavelet denoising of multiframe optical coherence tomography data. Biomedical Optics Express. 3(3), 572-589(2012).

【15】Jian Z P, Yu L F, Rao B et al. Three-dimensional speckle suppression in optical coherence tomography based on the curvelet transform. Optics Express. 18(2), 1024-1032(2010).

【16】Fang L Y, Li S T, Nie Q et al. Sparsity based denoising of spectral domain optical coherence tomography images. Biomedical Optics Express. 3(5), 927-942(2012).

【17】Ma Y H, Chen X J, Zhu W F et al. Speckle noise reduction in optical coherence tomography images based on edge-sensitive cGAN. Biomedical Optics Express. 9(11), 5129-5146(2018).

【18】Sid Ahmed S, Messali Z, Poyer F et al. Iterative variance stabilizing transformation denoising of spectral domain optical coherence tomography images applied to retinoblastoma. Ophthalmic Research. 59(3), 164-169(2018).

【19】Mallat S G. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 11(7), 674-693(1989).

【20】Huang G, Pu Y F, Chen Q L et al. Research on image denoising based on fractional order integral. Systems Engineering and Electronics. 33(4), 925-932(2011).
黄果, 蒲亦非, 陈庆利 等. 基于分数阶积分的图像去噪. 系统工程与电子技术. 33(4), 925-932(2011).

【21】Candan C, Kutay M A and Ozaktas H M. The discrete fractional Fourier transform. IEEE Transactions on Signal Processing. 48(5), 1329-1337(2000).

【22】Pu Y F, Zhou J L and Yuan X. Fractional differential mask: a fractional differential-based approach for multiscale texture enhancement. IEEE Transactions on Image Processing. 19(2), 491-511(2010).

【23】AI Challenger. Automatic segmentation of fundus edema lesions [2019-01-29].https:∥challenger.ai/competition/fl2018. (0).
全球AI挑战赛. 眼底水肿病变区域自动分割[2019-01-29]. https:∥challenger.ai/competition/fl2018. (0).

【24】Srinivasan P P, Kim L A, Mettu P S et al. Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images. Biomedical Optics Express. 5(10), 3568-3577(2014).

【25】He J T, Chen M H, Jia W Y et al. Segmentation of diabetic macular edema in OCT retinal images. Opto-Electronic Engineering. 45(7), (2018).
何锦涛, 陈明惠, 贾文宇 等. 眼底OCT图像中糖尿病性黄斑水肿的分割. 光电工程. 45(7), (2018).

引用该论文

Chenxi Zhang,Minghui Chen,Fan Wang,Naijun Gao,Gang Zheng. Optical Coherence Tomography Image Denoising Algorithm Based on Wavelet Transform and Fractional Integral[J]. Laser & Optoelectronics Progress, 2019, 56(18): 181008

张晨曦,陈明惠,王帆,高乃珺,郑刚. 小波变换和分数阶积分结合的OCT图像去噪算法[J]. 激光与光电子学进展, 2019, 56(18): 181008

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF