首页 > 论文 > 中国激光 > 46卷 > 9期(pp:905002--1)

基于自适应鲁棒控制提升快速反射镜的抗扰能力

Improving Anti-Disturbance Capability of Fast Steering Mirror by Adaptive Robust Control

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

航空光电稳定平台广泛采用快速反射镜进行视轴稳定,航空环境中的各种扰动,尤其是振动会影响快速反射镜的稳定性能。针对传统的抗扰方法[如比例-积分-微分控制器(PID)、干扰观测器(DOB)等]抑制扰动效果不明显的问题,提出一种基于自适应鲁棒控制(ARC)方法的快速反射镜抗扰策略。实验测试发现,引入ARC以后,快速反射镜在振动环境中的稳态均方根误差值相比于PID降低约80%,相比于DOB降低约60%,表明ARC对于提升快速反射镜的抗扰能力和稳定性能具有显著效果,具有较大的工程应用价值。

Abstract

Fast steering mirrors (FSM) are widely used in aeronautical optoelectronic stabilization platform for line-of-sight stabilization. The stability of the FSM is affected by various disturbances especially the vibration in the aviation environment. Traditional anti-disturbance methods, such as proportion integration differentiation controller (PID) and disturbance observer (DOB), have a little effect on suppressing disturbance in FSM. To solve these problems, a fast anti-disturbance strategy based on adaptive robust control (ARC) is proposed. The experimental results show that the steady-state root mean square error of FSM in vibration environment is reduced by about 80% compared with that of the PID control strategy and about 60% compared with that of the DOB control strategy after the introduction of the ARC. It shows that ARC has remarkable effect on improving the anti-interference ability and stability of FSM, and has large engineering application value.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/CJL201946.0905002

所属栏目:光束传输与控制

基金项目:国家自然科学基金;

收稿日期:2019-04-15

修改稿日期:2019-05-22

网络出版日期:2019-09-01

作者单位    点击查看

王正玺:中国科学院长春光学精密机械与物理研究所航空光学成像与测量重点实验室, 吉林 长春 130033中国科学院大学, 北京 100049
张葆:中国科学院长春光学精密机械与物理研究所航空光学成像与测量重点实验室, 吉林 长春 130033
李贤涛:中国科学院长春光学精密机械与物理研究所航空光学成像与测量重点实验室, 吉林 长春 130033

联系人作者:张葆(clearsky_zh@163.com)

备注:国家自然科学基金;

【1】Sweeney M N, Rynkowski G A, Ketabchi M et al. Design considerations for fast-steering mirrors (FSMs). Proceedings of SPIE. 4773, 63-73(2002).

【2】Xu X H, Yang H B, Wang B et al. Research on key technology of fast-steering mirror. Laser & Infrared. 43(10), 1095-1103(2013).
徐新行, 杨洪波, 王兵 等. 快速反射镜关键技术研究. 激光与红外. 43(10), 1095-1103(2013).

【3】Wan M, Zhang J R, Nie W J et al. Precise pointing system using fast steering mirror. Laser & Infrared. 29(3), 145-147(1999).
万敏, 张家如, 聂文杰 等. 快速倾斜反射镜精跟踪系统. 激光与红外. 29(3), 145-147(1999).

【4】Csencsics E and Schitter G. System design and control of a resonant fast steering mirror for lissajous-based scanning. ASME Transactions on Mechatronics. 22(5), 1963-1972(2017).

【5】Chen N H, Potsaid B, Wen J T et al. Modeling and control of a fast steering mirror in imaging applications. [C]∥2010 IEEE International Conference on Automation Science and Engineering, August 21-24, 2010, Toronto, ON, USA. New York: IEEE. 27-32(2010).

【6】Portillo A A, Ortiz G G and Racho C. Fine pointing control for optical communications. [C]∥2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542), March 10-17, 2001, Big Sky, MT, USA. New York: IEEE. 1541-1550(2001).

【7】Ding K, Huang Y M, Ma J G et al. Error adaptive feedforward composite control of fast-steering-mirror. Chinese Journal of Lasers. 38(7), (2011).
丁科, 黄永梅, 马佳光 等. 快速反射镜的误差自适应前馈复合控制. 中国激光. 38(7), (2011).

【8】Teng Y J, Song Y S, Tong S F et al. Acquisition performance of laser communication system based on airship platform. Acta Optica Sinica. 38(6), (2018).
滕云杰, 宋延嵩, 佟首峰 等. 基于飞艇平台激光通信系统的捕获性能研究. 光学学报. 38(6), (2018).

【9】Ding K, Huang Y M, Ma J G et al. Composite control of fast-steering-mirror for beam jitter. Optics and Precision Engineering. 19(9), 1991-1998(2011).
丁科, 黄永梅, 马佳光 等. 抑制光束抖动的快速反射镜复合控制. 光学精密工程. 19(9), 1991-1998(2011).

【10】Liu H Q, Ma H M, Yan D J et al. Image motion detection for space camera. Laser & Optoelectronics Progress. 56(8), (2019).
刘海秋, 马慧敏, 闫得杰 等. 空间相机像移探测方法的研究进展. 激光与光电子学进展. 56(8), (2019).

【11】Zhao J T, Jin G S and Gao X H. Fuzzy adaptive PID control algorithm based on fast steering mirror. Laser & Infrared. 48(6), 756-761(2018).
赵继庭, 金刚石, 高旭辉. 基于快速反射镜的模糊自适应PID控制算法研究. 激光与红外. 48(6), 756-761(2018).

【12】Kempf C J and Kobayashi S. Disturbance observer and feedforward design for a high-speed direct-drive positioning table. IEEE Transactions on Control Systems Technology. 7(5), 513-526(1999).

【13】Yao B and Tomizuka M. Adaptive robust control of a class of multivariable nonlinear systems. IFAC Proceedings Volumes. 29(1), 2732-2737(1996).

【14】Lee Y, Gong J Q, Yao B et al. Fuzzy adaptive robust control of a class of nonlinear systems. [C]∥2001 American Control Conference (Cat. No.01CH37148), June 25-27, 2001, Arlington, VA, USA. New York: IEEE. 4040-4045(2001).

【15】Yao B and Xu L. Adaptive robust motion control of linear motors for precision manufacturing. Mechatronics. 12(4), 595-616(2002).

【16】Ma J G. The basic technologies of the acquisition, tracking and pointing systems. Opto-Electronic Engineering. 16(3), 1-42(1989).
马佳光. 捕获跟踪与瞄准系统的基本技术问题. 光学工程. 16(3), 1-42(1989).

引用该论文

Zhengxi Wang,Bao Zhang,Xiantao Li. Improving Anti-Disturbance Capability of Fast Steering Mirror by Adaptive Robust Control[J]. Chinese Journal of Lasers, 2019, 46(9): 0905002

王正玺,张葆,李贤涛. 基于自适应鲁棒控制提升快速反射镜的抗扰能力[J]. 中国激光, 2019, 46(9): 0905002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF