首页 > 论文 > 激光与光电子学进展 > 57卷 > 20期(pp:201010--1)

结合显著性检测的SAR流冰分离算法

SAR Flow Ice Separation Algorithm Combined with Saliency Detection

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对合成孔径雷达(SAR)图像中普遍存在具有相干斑噪声、流冰区域浮冰接触紧密及小碎冰较多等背景复杂问题,提出了一种基于背景抑制显著性检测的SAR流冰分离算法。首先基于图像的显著性检测,通过学习随机森林回归量得到初步显著性图;然后通过超像素构建图像区域并进行离散傅里叶变换,提取区域频域特征并计算卡方距离;之后对边界背景进行抑制,生成背景抑制模块图;最后将两阶段的图融合得到增强显著性图。在SAR海冰数据集上对所提算法、7种显著性算法及3种海冰分割方法进行对比实验。结果表明,所提算法可以有效检测出孤立浮冰,抑制背景区域。

Abstract

In the synthetic aperture radar (SAR) images, there are many complex background problems, such as speckle noise, close contact of floating ice in drift-ice area, and more small pieces of ice. Here, we describe a SAR flow ice separation algorithm based on background-suppression saliency detection. This algorithm obtains a preliminary saliency map by learning the random forest regression based on the saliency detection of images. Then the image region is constructed by using super pixels. Additionally, discrete Fourier transformation is performed, after which the frequency domain features of the region are extracted, and the chi-squared distance is calculated. The proposed algorithm then suppresses the boundary background to generate a background-suppression module diagram, followed by fusion of the two-stage graph to obtain the enhanced saliency graph. We evaluate the proposed algorithm and compare its performance against seven saliency algorithms and three sea-ice-segmentation methods using a SAR sea-ice dataset. The results show that the proposed algorithm can effectively detect isolated ice floes and suppress background areas.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TP751.1

DOI:10.3788/LOP57.201010

所属栏目:图像处理

收稿日期:2019-12-24

修改稿日期:2020-02-25

网络出版日期:2020-10-01

作者单位    点击查看

杨红霞:大连海事大学信息科学技术学院, 辽宁 大连 116026
郭浩:大连海事大学信息科学技术学院, 辽宁 大连 116026
高岩:大连海事大学信息科学技术学院, 辽宁 大连 116026
安居白:大连海事大学信息科学技术学院, 辽宁 大连 116026

联系人作者:郭浩(guohao0512@dlmu.edu.cn)

【1】Ren J C, Hwang B, Murray P, et al. Effective SAR sea ice image segmentation and touch floe separation using a combined multi-stage approach . [C]∥2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), July 26-31, 2015, Milan, Italy. New York: IEEE. 2015, 1040-1043.

【2】Li Q L. Study on separation method of large contact ice floes in polarimetric SAR ice flow zone [D]. Dalian: Dalian Maritime University. 2017.
李钦岚. 极化SAR流冰区大块接触性浮冰分离方法研究 [D]. 大连: 大连海事大学. 2017.

【3】Al-amri S S, Kalyankar N V. -05-21)[2019-12-23] . https:∥arxiv. 2010, org/abs/1005: 4020.

【4】Dang X Y, Wu Y M, Fan W, et al. Discussion on sea ice segmentation of high resolution radar data . [C]∥2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), July 10-15, 2016, Beijing, China. New York: IEEE. 2016, 4861-4864.

【5】Yang X Z, Clausi D A. Evaluating SAR sea ice image segmentation using edge-preserving region-based MRFs [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2012, 5(5): 1383-1393.

【6】Chen Q F, Koltun V. Fast MRF optimization with application to depth reconstruction . [C]∥2014 IEEE Conference on Computer Vision and Pattern Recognition, June 23-28, 2014, Columbus, OH, USA. New York: IEEE. 2014, 3914-3921.

【7】Han L Y. Research on SAR image segmentation based on watershed Xi''''an: [D]. Xidian University. 2018.
韩琳旖. 基于分水岭的SAR图像分割方法研究 [D]. 西安: 西安电子科技大学. 2018.

【8】Jing Y, Liu J X, Liu Z X, et al. Fast edge detection approach based on global optimization convex model and split Bregman algorithm [J]. Diagnostyka. 2018, 19(2): 23-29.

【9】Tan W K, Li J, Xu L L, et al. Semiautomated segmentation of Sentinel-1 SAR imagery for mapping sea ice in Labrador coast [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2018, 11(5): 1419-1432.

【10】Karvonen J A. Baltic sea ice SAR segmentation and classification using modified pulse-coupled neural networks [J]. IEEE Transactions on Geoscience and Remote Sensing. 2004, 42(7): 1566-1574.

【11】Zhang Q, Skjetne R. Image processing for identification of sea-ice floes and the floe size distributions [J]. IEEE Transactions on Geoscience and Remote Sensing. 2015, 53(5): 2913-2924.

【12】Zhou Y, Mao A L, Huo S W, et al. Salient object detection via fuzzy theory and object-level enhancement [J]. IEEE Transactions on Multimedia. 2019, 21(1): 74-85.

【13】Achanta R, Shaji A, Smith K, et al. SLIC superpixels compared to state-of-the-art superpixel methods [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2012, 34(11): 2274-2282.

【14】Zhu W J, Liang S, Wei Y C, et al. Saliency optimization from robust background detection . [C]∥2014 IEEE Conference on Computer Vision and Pattern Recognition, June 23-28, 2014, Columbus, OH, USA. New York: IEEE. 2014, 2814-2821.

【15】Yang C, Zhang L H, Lu H C, et al. Saliency detection via graph-based manifold ranking . [C]∥2013 IEEE Conference on Computer Vision and Pattern Recognition, June 23-28, 2013, Portland, OR, USA. New York: IEEE. 2013, 3166-3173.

【16】Wei Y C, Wen F, Zhu W J, et al. Geodesic saliency using background priors [M]. ∥Fitzgibbon A, Lazebnik S, Perona P, et al. Computer vision-ECCV 2012. Lecture notes in computer science. Heidelberg: Springer. 2012, 7574: 29-42.

【17】Jiang H Z, Wang J D, Yuan Z J, et al. Salient object detection: a discriminative regional feature integration approach . [C]∥2013 IEEE Conference on Computer Vision and Pattern Recognition, June 23-28, 2013, Portland, OR, USA. New York: IEEE. 2013, 2083-2090.

【18】Sun J G, Lu H C, Liu X P. Saliency region detection based on Markov absorption probabilities [J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society. 2015, 24(5): 1639-1649.

【19】Qin Y, Lu H C, Xu Y Q, et al. Saliency detection via cellular automata . [C]∥2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 7-12, 2015, Boston, MA, USA. New York: IEEE. 2015, 110-119.

【20】Zhou L, Yang Z H, Zhou Z T, et al. Salient region detection using diffusion process on a two-layer sparse graph [J]. IEEE Transactions on Image Processing. 2017, 26(12): 5882-5894.

引用该论文

Yang Hongxia,Guo Hao,Gao Yan,An Jubai. SAR Flow Ice Separation Algorithm Combined with Saliency Detection[J]. Laser & Optoelectronics Progress, 2020, 57(20): 201010

杨红霞,郭浩,高岩,安居白. 结合显著性检测的SAR流冰分离算法[J]. 激光与光电子学进展, 2020, 57(20): 201010

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF