首页 > 论文 > 激光与光电子学进展 > 56卷 > 17期(pp:170612--1)

多芯光纤特性及其传感应用

Multi-Core Fiber Characteristics and Its Sensing Applications

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

作为空分复用的多芯光纤成为进一步增大光纤通信容量的最后一块处女地,近几年来格外引人注目,已经有了大量的关于解决扩容增速的报道。本研究围绕多芯光纤的基本性能,特别是在非光纤通信及其传感应用方面,给出了较为全面的综述。讨论了多芯光纤有关的问题,包括芯间耦合与串扰问题、多芯光纤的传输特性与弯曲特性、多芯光纤的分束与连接技术,以及多芯光纤的锥体耦合技术等多芯光纤在光通信技术领域涉猎的核心问题,同时也讨论了新型中空椭圆形多芯保偏光纤,并给出多芯光纤在大功率光纤激光器、光纤干涉方面的若干应用实例,重点介绍了多芯光纤在传感领域的若干应用。

Abstract

As the remaining frontier for increasing the communication capacity of optical fibers, multi-core fibers with space division multiplexing have attracted much attention in recent years, with many solutions proposed for expanding the capacity and improving the transmission speed. This paper comprehensively reviews the basic properties of multi-core optical fibers, especially in non-optical-fiber communications and sensing applications. We focus on the main issues related to multi-core fibers, namely, inter-core coupling and crosstalk problems, the transmission and bending characteristics of the fibers, fan-in/fan-out and connection technologies, the taped fiber coupling technique for multicores, and other dominant problems in optical fiber communication technology. A new hollow elliptic multi-core polarization-maintaining fiber is discussed as well. In a series of examples, we finally show how multi-core fibers are applied in high-power fiber lasers and fiber interference, emphasizing their applications in various sensing fields.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.170612

所属栏目:功能光纤

基金项目:国家自然科学基金 、广西科技专项 、 国防基金;

收稿日期:2019-05-22

修改稿日期:2019-07-09

网络出版日期:2019-09-01

作者单位    点击查看

苑立波:桂林电子科技大学电子工程与自动化学院光子学研究中心, 广西 桂林 541004

联系人作者:苑立波(lbyuan@vip.sina.com)

备注:国家自然科学基金 、广西科技专项 、 国防基金;

【1】Richardson D J, Fini J M and Nelson L E. Space-division multiplexing in optical fibres. Nature Photonics. 7(5), 354-362(2013).

【2】Saitoh K and Matsuo S. Multicore fibers for large capacity transmission. Nanophotonics. 2(5/6), 441-454(2013).

【3】Matsuo S, Sasaki Y, Ishida I et al. Recent progress in multi core and few mode fiber. [C]∥Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, March 17-21, 2013, Anaheim, CA, USA. Washington, D. C.: OSA. OM3I, (2013).

【4】Hayashi T. Chapter 9: multi-core optical fibers. 321-352(2013).

【5】Sano A, Kobayashi T, Yamanaka S et al. 102.3-Tb/s (224×548-Gb/s) C- and extended L-band all-Raman transmission over 240 km using PDM-64QAM single carrier FDM with digital pilot tone. [C]∥Optical Fiber Communication Conference, March 4-8, 2012, Los Angeles, California, USA. Washington, D. C.: OSA. PDP5C, (2012).

【6】Zhang S L, Huang M F, Yaman F et al. 40×117.6 Gb/s PDM-16QAM OFDM transmission over 10, 181 km with soft-decision LDPC coding and nonlinearity compensation. [C]∥Optical Fiber Communication Conference, March 4-8, 2012, Los Angeles, California, USA. Washington, D. C.: OSA. PDP5C, (2012).

【7】Cai J X, Cai Y, Davidson C et al. 20 Tbit/s capacity transmission over 6860 km. [C]∥Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, March 6-10, 2011, Los Angeles, California, USA. Washington, D. C.: OSA. PDPB4, (2011).

【8】Essiambre R J, Kramer G, Winzer P J et al. Capacity limits of optical fiber networks. Journal of Lightwave Technology. 28(4), 662-701(2010).

【9】Essiambre R J and Tkach R W. Capacity trends and limits of optical communication networks. Proceedings of the IEEE. 100(5), 1035-1055(2012).

【10】Morioka T. New generation optical infrastructure technologies: “EXAT initiative” towards 2020 and beyond. [C]∥2009 14th OptoElectronics and Communications Conference, July 13-17, 2009, Vienna, Austria. New York: IEEE. 10846198, (2009).

【11】Iano S, Sato T, Sentsui S et al. Multicore optical fiber. [C]∥Optical Fiber Communication, March 6, 1979, Washington, D. C., USA. Washington, D. C.: OSA. WB1, (1979).

【12】Inao S, Sato T, Hondo H et al. High density multicore-fiber cable. [C]∥International Wire & Cable Symp(IWCS). [S. l.: s. n. ]. 370-384(1979).

【13】Berdagué S and Facq P. Mode division multiplexing in optical fibers. Applied Optics. 21(11), 1950-1955(1982).

【14】Kashima N, Maekawa E and Nihei F. New type of multicore fiber. [C]∥Optical Fiber Communication, April 13, 1982, Phoenix, Arizona, USA. Washington, D. C.: OSA. ThAA5, (1982).

【15】Sumida S, Maekawa E and Murata H. Design of bunched optical-fiber parameters for 1.3-μm wavelength subscriber line use. Journal of Lightwave Technology. 4(8), 1010-1015(1986).

【16】Nihei F, Yamamoto Y and Kojima N. Optical subscriber cable technologies in Japan. Journal of Lightwave Technology. 5(6), 809-821(1987).

【17】Sumida S, Maekawa E and Murata H. Fundamental studies on flat bunched optical fibers. Journal of Lightwave Technology. 3(1), 159-164(1985).

【18】Le N G. Ultra high density cables using a new concept of bunched multicore monomode fibers: a key for the future FTTH networks. [C]∥Proceedings of the 43rd International Wire & Cable Symposium (IWCS), October 14-17, 1994, Atlanta, GA. New York: NASA. 203-210(1994).

【19】Stern J R, Ballance J W, Faulkner D W et al. Passive optical local networks for telephony applications and beyond. Electronics Letters. 23(24), 1255-1257(1987).

【20】Taylor D M, Bennett C R, Shepherd T J et al. Demonstration of multi-core photonic crystal fibre in an optical interconnect. Electronics Letters. 42(6), 331-332(2006).

【21】Imamura K, Mukasa K, Sugizaki R et al. Multi-core holey fibers for ultra large capacity wide-band transmission. [C]∥2008 34th European Conference on Optical Communication, September 21-25, 2008, Brussels, Belgium. New York: IEEE. 10426525, (2008).

【22】Imamura K, Mukasa K, Mimura Y et al. Multi-core holey fibers for the long-distance (>100 km) ultra large capacity transmission. [C]∥Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, March 22-26, 2009, San Diego, California, USA. Washington, D. C.: OSA. OTuC3, (2009).

【23】Koshiba M, Saitoh K and Kokubun Y. Heterogeneous multi-core fibers: proposal and design principle. IEICE Electronics Express. 6(2), 98-103(2009).

【24】Sakaguchi J, Puttnam B J, Klaus W et al. 19-core fiber transmission of 19×100×172-Gb/s SDM-WDM-PDM-QPSK signals at 305Tb/s. [C]∥Optical Fiber Communication Conference, March 4-8, 2012, Los Angeles, California, USA. Washington, D. C.: OSA. PDP5C, (2012).

【25】Ryf R, Essiambre R, Gnauck A et al. Space-division multiplexed transmission over 4200 km 3-core microstructured fiber. [C]∥Optical Fiber Communication Conference, March 4-8, 2012, Los Angeles, California, USA. Washington, D. C.: OSA. PDP5C, (2012).

【26】Liu X, Chandrasekhar S, Chen X et al. 1.12-Tb/s 32-QAM-OFDM superchannel with 86-b/s/Hz intrachannel spectral efficiency and space-division multiplexed transmission with 60-b/s/Hz aggregate spectral efficiency. Optics Express. 19(26), B958-B964(2011).

【27】Lee B G, Kuchta D M, Doany F E et al. 120-Gb/s 100-m transmission in a single multicore multimode fiber containing six cores interfaced with a matching VCSEL array. [C]∥IEEE Photonics Society Summer Topicals 2010, July 19-21, 2010, Playa del Carmen, Mexico. New York: IEEE. 223-224(2010).

【28】Zhu B Y, Taunay T F, Yan M F et al. 7×10-Gb/s multicore multimode fiber transmissions for parallel optical data links. [C]∥36th European Conference and Exhibition on Optical Communication, September 19-23, 2010, Torino, Italy. New York: IEEE. 11637154, (2010).

【29】Zhu B, Taunay T F, Yan M F et al. Seven-core multicore fiber transmissions for passive optical network. Optics Express. 18(11), 11117-11122(2010).

【30】Yuan L B, Yang J, Liu Z H et al. In-fiber integrated Michelson interferometer. Optics Letters. 31(18), 2692-2694(2006).

【31】Yuan L B and Yang J. -02-07. Liu Z H. In-fiber integrated Michelson interferometer: 200610010422.2. (2007).
苑立波, 杨军, 刘志海. -02-07. . 集成为单根光纤的迈克尔逊干涉仪: 200610010422.2. (2007).

【32】Yuan L B, Yang J and the fabrication methods: 200710072625.9[P]. -01-16. (2008).
苑立波, 杨军, 刘志海. -01-16. . 纤维集成式马赫曾德干涉仪及其制造方法: 200710072625.9. (2008).

【33】Yuan L B, Liu Z H and Yang J. Coupling characteristics between single-core fiber and multicore fiber. Optics Letters. 31(22), 3237-3239(2006).

【34】Yuan L B, Liu Z H and Yang J. A coupler. -11-17. its fabrication methods for multicore fibers by welding, tapering with a single core optical fiber: 200610151033.1. (2006).
苑立波, 刘志海, 杨军. -11-17. . 单芯光纤与多芯光纤耦合器及其融接拉锥耦合方法: 200610151033.1. (2006).

【35】Yuan L B, Liu Z H, Yang J et al. Bitapered fiber coupling characteristics between single-mode single-core fiber and single-mode multicore fiber. Applied Optics. 47(18), 3307-3312(2008).

【36】Liu Z H, Bo F S, Wang L et al. Integrated fiber Michelson interferometer based on poled hollow twin-core fiber. Optics Letters. 36(13), 2435-2437(2011).

【37】Yuan L B, Yang J, Guan C Y et al. Three-core fiber-based shape-sensing application. Optics Letters. 33(6), 578-580(2008).

【38】Yuan L B, Dai Q, Tian F J et al. Linear-core-array microstructured fiber. Optics Letters. 34(10), 1531-1533(2009).

【39】Yuan L B. Recent progress of in-fiber integrated interferometers. Photonic Sensors. 1(1), 1-5(2011).

【40】Yuan L B. In-fiber integrated optic devices for sensing applications. Proceedings of SPIE. 8421, (2012).

【41】Yuan L B. In-fiber integrated optic devices and its applications. [C]∥The 5th International Symposium on Photonics and Optoelectronics (SOPO2013), May 23-25, 2013, Beijing, China. [S.l.: s.n.]. (2013).

【42】Marcuse D. Influence of curvature on the losses of doubly clad fibers. Applied Optics. 21(23), 4208-4213(1982).

【43】Snyder A W. Coupled-mode theory for optical fibers. Journal of the Optical Society of America. 62(11), 1267-1277(1972).

【44】Hardy A and Streifer W. Coupled mode theory of parallel waveguides. Journal of Lightwave Technology. 3(5), 1135-1146(1985).

【45】Streifer W, Osinski M and Hardy A. Reformulation of the coupled-mode theory of multiwaveguide systems. Journal of Lightwave Technology. 5(1), 1-4(1987).

【46】Chuang S L. A coupled mode formulation by reciprocity and a variational principle. Journal of Lightwave Technology. 5(1), 5-15(1987).

【47】Haus H, Huang W, Kawakami S et al. Coupled-mode theory of optical waveguides. Journal of Lightwave Technology. 5(1), 16-23(1987).

【48】Huang W P. Coupled-mode theory for optical waveguides: an overview. Journal of the Optical Society of America A. 11(3), 963-983(1994).

【49】Koshiba M, Saitoh K, Takenaga K et al. Multi-core fiber design and analysis: coupled-mode theory and coupled-power theory. Optics Express. 19(26), B102-B111(2011).

【50】Takenaga K, Arakawa Y, Tanigawa S et al. Reduction of crosstalk by trench-assisted multi-core fiber. [C]∥Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, March 6-10, 2011, Los Angeles, California, USA. Washington, D. C.: OSA. OWJ4, (2011).

【51】Imamura K, Mukasa K and Exposition on Optical Communications. Geneva, Switzerland. Washington, D. C.: OSA, 2011: Mo. 1. LeCervin. (2011).

【52】Hayashi T, Taru T, Shimakawa O et al. Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber. Optics Express. 19(17), 16576-16592(2011).

【53】Hayashi T, Taru T, Shimakawa O et al. Characterization of crosstalk in ultra-low-crosstalk multi-core fiber. Journal of Lightwave Technology. 30(4), 583-589(2012).

【54】Hayashi T, Taru T, Nagashima T et al. Multi-core fiber for high-capacity long-haul spatially-multiplexed transmission. SEI Technical Review. 7(77), 14-22(2013).

【55】Saitoh K, Matsui T, Sakamoto T et al. Multi-core hole-assisted fibers for high core density space division multiplexing. [C]∥Opto-Electronics and Communications Conference (OECC), July 5-9, 2010, Sapporo, Japan. New York: IEEE. 11570089, (2010).

【56】Kumar S and Manyam U H. -08-26[2019-05-05]. https: ∥patents.glgoo.top/patent/US6611648B2/en. (2003).

【57】Sakaguchi J, Puttnam B J, Klaus W et al. 305 Tb/s space division multiplexed transmission using homogeneous 19-core fiber. Journal of Lightwave Technology. 31(4), 554-562(2013).

【58】Jain S, Castro C, Jung Y M et al. 32-core erbium/ytterbium-doped multicore fiber amplifier for next generation space-division multiplexed transmission system. Optics Express. 25(26), 32887-32896(2017).

【59】Marcuse D. Curvature loss formula for optical fibers. Journal of the Optical Society of America. 66(3), 216-220(1976).

【60】Schermer R T and Cole J H. Improved bend loss formula verified for optical fiber by simulation and experiment. IEEE Journal of Quantum Electronics. 43(10), 899-909(2007).

【61】Sharma A B. Al-Ani A H, Halme S J. Constant-curvature loss in monomode fibers: an experimental investigation. Applied Optics. 23(19), 3297-3301(1984).

【62】Nagano K, Kawakami S and Nishida S. Change of the refractive index in an optical fiber due to external forces. Applied Optics. 17(13), 2080-2085(1978).

【63】Hayashi T, Nagashima T, Shimakawa O et al. Crosstalk variation of multi-core fibre due to fibre bend. [C]∥36th European Conference and Exhibition on Optical Communication, September 19-23, 2010, Torino, Italy. New York: IEEE. 11636875, (2010).

【64】Nakazawa M, Yoshida M and Hirooka T. Nondestructive measurement of mode couplings along a multi-core fiber using a synchronous multi-channel OTDR. Optics Express. 20(11), 12530-12540(2012).

【65】Klaus W, Sakaguchi J, Puttnam B J et al. Free-space coupling optics for multicore fibers. IEEE Photonics Technology Letters. 24(21), 1902-1905(2012).

【66】Tottori Y, Kobayashi T and Watanabe M. Low loss optical connection module for 7-core multi-core fiber and seven single mode fibers. [C]∥2012 IEEE Photonics Society Summer Topical Meeting Series, July 9-11, 2012, Seattle, WA, USA. New York: IEEE. 232-233(2012).

【67】Thomson R R, Bookey H T, Psaila N D et al. Ultrafast-laser inscription of a three dimensional fan-out device for multicore fiber coupling applications. Optics Express. 15(18), 11691-11697(2007).

【68】Neugroschl D, Kopp V I, Singer J et al. “Vanishing-core” tapered coupler for interconnect applications. Proceedings of SPIE. 7221, (2009).

【69】Kopp V I, Park J, Wlodawski M et al. Pitch reducing optical fiber array and multicore fiber for space-division multiplexing. [C]∥2013 IEEE Photonics Society Summer Topical Meeting Series, July 8-10, 2013, Waikoloa, HI, USA. New York: IEEE. 99-100(2013).

【70】Kopp V I, Park J, Wlodawski M et al. Chiral fibers: microformed optical waveguides for polarization control, sensing, coupling, amplification, and switching. Journal of Lightwave Technology. 32(4), 605-613(2014).

【71】Kopp V I, Park J, Wlodawski M S et al. Vanishing core optical waveguides for coupling, amplification, sensing, and polarization control. [C]∥Advanced Photonics, July 27-31, 2014, Barcelona, Spain. Washington, D. C.: OSA. SoW1B, (2014).

【72】Snyder A W and Love J D. Bends. ∥Optical waveguide theory. Boston, MA: Springer. 179-188(1983).

【73】Tian F J, Yuan L B, Dai Q et al. Design and fabrication of embedded two elliptical cores hollow fiber. Proceedings of SPIE. 8199, (2011).

【74】Tian F J, Yuan L B, Dai Q et al. Embedded multicore hollow fiber with high birefringence. Applied Optics. 50(33), 6162-6167(2011).

【75】Guan C Y, Tian F J, Dai Q et al. Characteristics of embedded-core hollow optical fiber. Optics Express. 19(21), 20069-20078(2011).

【76】Jin W, Stewart G, Wilkinson M et al. Compensation for surface contamination in a D-fiber evanescent wave methane sensor. Journal of Lightwave Technology. 13(6), 1177-1183(1995).

【77】Chen X, Zhou K, Zhang L et al. Optical chemsensors utilizing long-period fiber gratings UV-inscribed in D-fiber with enhanced sensitivity through cladding etching. IEEE Photonics Technology Letters. 16(5), 1352-1354(2004).

【78】Chandani S M. Jaeger N A F. Fiber-optic temperature sensor using evanescent fields in D fibers. IEEE Photonics Technology Letters. 17(12), 2706-2708(2005).

【79】Chiu M H, Wang S F and Chang R S. D-type fiber biosensor based on surface-plasmon resonance technology and heterodyne interferometry. Optics Letters. 30(3), 233-235(2005).

【80】Fleming J W. Dispersion in GeO2-SiO2 glasses. Applied Optics. 23(24), 4486-4493(1984).

【81】Tian F J, Yuan L B, Dai Q et al. Birefringence analysis of a two elliptical cores hollow fiber based on finite element method. Proceedings of SPIE. 8351, (2012).

【82】Yuan L B, Dai Q, Yang J, the fabrication method: 200910071521.5[P] et al. -09-16. (2009).
苑立波, 戴强, 杨军 等. -09-16. . 一种平行阵列多芯光纤及其制备方法: 200910071521.5. (2009).

【83】Guan C Y, Yuan L B, Dai Q et al. Supermodes analysis for linear-core-array microstructured fiber. Journal of Lightwave Technology. 27(11), 1741-1745(2009).

【84】Beach R J, Feit M D, Mitchell S C et al. Phase-locked antiguided multiple-core ribbon fiber. IEEE Photonics Technology Letters. 15(5), 670-672(2003).

【85】Drachenberg D, Messerly M, Pax P et al. First multi-watt ribbon fiber oscillator in a high order mode. Optics Express. 21(15), 18089-18096(2013).

【86】Yuan L B, Dai Q, Tian F J, its fabrication method: 201010138977.1[P] et al. -09-22. (2010).
苑立波, 戴强, 田凤军 等. -09-22. . 一种环形分布多芯光纤及其制备方法: 201010138977.1. (2010).

【87】Elkin N N, Napartovich A P, Sukharev A G et al. Direct numerical simulation of radiation propagation in a multicore fiber. Optics Communications. 177, 207-217(2000).

【88】Wrage M, Glas P, Fischer D et al. Phase-locking of a multicore fiber laser by wave propagation through an annular waveguide. Optics Communications. 205(4/5/6), 367-375(2002).

【89】Wrage M, Glas P, Leitner M et al. Experimental and numerical determination of coupling constant in a multicore fiber. Optics Communications. 175(1/2/3), 97-102(2000).

【90】Gander M J. Galliot E A C, McBride R, et al. Bend measurement using multicore optical fiber. [C]∥12th International Conference on Optical Fiber Sensors, October 28, 1997, Williamsburg, Virginia, USA. Washington, D. C.: OSA. OWC6, (1997).

【91】Yuan L B, Yang J and Liu Z H. A compact fiber-optic flow velocity sensor based on a twin-core fiber Michelson interferometer. IEEE Sensors Journal. 8(7), 1114-1117(2008).

【92】Yuan L B. Recent progress of in-fiber integrated interferometers. Photonic Sensors. 1(1), 1-5(2011).

【93】Salceda-Delgado G, van Newkirk A, Antonio-Lopez J E et al. . Compact fiber-optic curvature sensor based on super-mode interference in a seven-core fiber. Optics Letters. 40(7), 1468-1471(2015).

【94】Romaniuk R S and Dorosz J. Temperature sensor based on double-core optical fiber. Proceedings of SPIE. 4887, 55-66(2002).

【95】Rugeland P and Margulis W. Revisiting twin-core fiber sensors for high-temperature measurements. Applied Optics. 51(25), 6227-6232(2012).

【96】Antonio-Lopez J E, Eznaveh Z S, LiKamWa P et al. . Multicore fiber sensor for high-temperature applications up to 1000 ℃. Optics Letters. 39(15), 4309-4312(2014).

【97】van Newkirk A, Antonio-Lopez E, Salceda-Delgado G et al. . Optimization of multicore fiber for high-temperature sensing. Optics Letters. 39(16), 4812-4815(2014).

【98】Zhou A, Li G P, Zhang Y H et al. Asymmetrical twin-core fiber based Michelson interferometer for refractive index sensing. Journal of Lightwave Technology. 29(19), 2985-2991(2011).

【99】Liu Z H, Wei Y, Zhang Y et al. Twin-core fiber SPR sensor. Optics Letters. 40(12), 2826-2829(2015).

【100】Liu Z H, Wei Y, Zhang Y et al. A multi-channel fiber SPR sensor based on TDM technology. Sensors and Actuators B: Chemical. 226, 326-331(2016).

【101】-05-03[2019-05-05]. https: ∥patents.google.com/patent/US6888623B2/en. (2005).

【102】Duncan R G, Froggatt M E, Kreger S T et al. High-accuracy fiber-optic shape sensing. Proceedings of SPIE. 6530, (2007).

【103】Duncan R G, Raum M T, Cadogan D P et al. Use of high spatial resolution fiber-optic shape sensors to monitor the shape of deployable space structures. AIP Conference Proceedings. 746(1), 880-886(2005).

【104】Klute S, Duncan R, Fielder R et al. Fiber-optic shape sensing and distributed strain measurements on a morphing chevron. [C]∥44th AIAA Aerospace Sciences Meeting and Exhibit, January 9-12, 2006, Reno, Nevada. New York: AIAA. 624, (2006).

【105】Arritt B, Murphey T, Dumm H P et al. Demonstration of the use of fiber-optics, with integrated fiber-Bragg gratings, for shape determination of large deployable structures. [C]∥48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, April 23-26, 2007, Honolulu, Hawaii. New York: AIAA. 2006, (2007).

【106】Jutte C V, Ko W L, Stephens C A et al. Deformed shape calculation of a full-scale wing using fiber optic strain data from a ground loads test. New York: National Aeronautics and Space Administration. (2011).

【107】Richards L, Parker A R, Ko W L et al. Real-time in-flight strain and deflection monitoring with fiber optic sensors. New York: National Aeronautics and Space Administration. (2008).

【108】Ginn S. Flexible wing designs with sensor control feedback for demonstration on the X-56A (MUTT). New York: National Aeronautics and Space Administration. (2012).

【109】Kremp T, Feder K S, Ko W et al. Performance characteristics of continuous multicore fiber optic sensor arrays. Proceedings of SPIE. 10058, (2017).

【110】Froggatt M E, Klein J W, Gifford D K et al. -07-08[2019-05-05]. https: ∥patents.glgoo.top/patent/US8773650B2/en. (2014).

【111】Lally E M, Reaves M, Horrell E et al. Fiber optic shape sensing for monitoring of flexible structures. Proceedings of SPIE. 8345, (2012).

引用该论文

Libo Yuan. Multi-Core Fiber Characteristics and Its Sensing Applications[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170612

苑立波. 多芯光纤特性及其传感应用[J]. 激光与光电子学进展, 2019, 56(17): 170612

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF