首页 > 论文 > 激光与光电子学进展 > 56卷 > 18期(pp:180102--1)

基于分光光度法的便携式亚硝氮测定仪

Portable Nitrite Analyzer Based on Spectrophotometry

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对走航式海洋环境监测的需要,研究一种基于分光光度法的便携式海水亚硝氮测定仪。该亚硝氮测定仪采用发光二极管(LED)和光电二极管分别作为仪器光源和检测器,利用控制芯片构建信号调理电路模块。该模块对LED光源提供恒流驱动,并对光电二极管检测到的光强信号进行转换、处理、解算。实验结果表明该亚硝氮测定仪具有低检出限(检出限为0.014 μmol·L -1)、高精度、优异的线性特性(线性相关系数大于0.9996)和良好的重复性(在3天内测定的相对标准偏差βRSD为0.25%~1.3%)。

Abstract

A portable seawater nitrite analyzer based on spectrophotometry was developed for the needs of navigational monitoring in marine environments. The nitrite analyzer used a light-emitting-diode (LED) as the light source, a photodiode as the detector, and a conditioning circuit module as the control chip. It provided constant current to drive the LED, and processed the transition, dispose, and calculation of the light intensity signal detected by the photodiode. The experimental results show that the nitrite analyzer has a low detection limit (0.014 μmol·L -1), high precision, excellent linearity (linear correlation coefficients are more than 0.9996), and good repetition. The relative standard deviations βRSD measured within three days are 0.25%-1.3%.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.180102

所属栏目:大气光学与海洋光学

基金项目:广西自然科学基金、近海海洋环境科学国家重点实验室访问学者基金、桂林电子科技大学研究生教育创新计划;

收稿日期:2019-02-25

修改稿日期:2019-04-11

网络出版日期:2019-09-01

作者单位    点击查看

董辰杨:桂林电子科技大学生命与环境科学学院, 广西 桂林 541004
李文湛:桂林电子科技大学生命与环境科学学院, 广西 桂林 541004
王志宏:桂林电子科技大学生命与环境科学学院, 广西 桂林 541004
梁晋涛:桂林电子科技大学生命与环境科学学院, 广西 桂林 541004

联系人作者:梁晋涛(dxljt@163.com)

备注:广西自然科学基金、近海海洋环境科学国家重点实验室访问学者基金、桂林电子科技大学研究生教育创新计划;

【1】Li X F, Fonseca-Batista D, Roevros N et al. Environmental and nutrient controls of marine nitrogen fixation. Progress in Oceanography. 167, 125-137(2018).

【2】Huo S L, Ma C Z, Xi B D et al. Development of methods for establishing nutrient criteria in lakes and reservoirs: a review. Journal of Environmental Sciences. 67, 54-66(2018).

【3】Martínez J, Ortiz A and Ortiz I. State-of-the-art and perspectives of the catalytic and electrocatalytic reduction of aqueous nitrates. Applied Catalysis B: Environmental. 207, 42-59(2017).

【4】Garcia-Segura S, Lanzarini-Lopes M, Hristovski K et al. Electrocatalytic reduction of nitrate: fundamentals to full-scale water treatment applications. Applied Catalysis B: Environmental. 236, 546-568(2018).

【5】Gao X J, Chen N W, Yu D et al. Hydrological controls on nitrogen (ammonium versus nitrate) fluxes from river to coast in a subtropical region: observation and modeling. Journal of Environmental Management. 213, 382-391(2018).

【6】Duca M. Koper M T M. Powering denitrification: the perspectives of electrocatalytic nitrate reduction. Energy & Environmental Science. 5(12), 9726-9742(2012).

【7】Boxman S E, Nystrom M, Ergas S J et al. Evaluation of water treatment capacity, nutrient cycling, and biomass production in a marine aquaponic system. Ecological Engineering. 120, 299-310(2018).

【8】Luong A D, de Laender F, Olsen Y et al. . Inferring time-variable effects of nutrient enrichment on marine ecosystems using inverse modelling and ecological network analysis. Science of the Total Environment. 493, 708-718(2014).

【9】Canfield D E, Glazer A N and Falkowski P G. The evolution and future of earth’s nitrogen cycle. Science. 330(6001), 192-196(2010).

【10】Yin G Y, Hou L J, Liu M et al. Effects of thiamphenicol on nitrate reduction and N2O release in estuarine and coastal sediments. Environmental Pollution. 214, 265-272(2016).

【11】Poulsen R, Cedergreen N, Hayes T et al. Nitrate: an environmental endocrine disruptor? A review of evidence and research needs. Environmental Science & Technology. 52(7), 3869-3887(2018).

【12】Wang Q H, Yu L J, Liu Y et al. Methods for the detection and determination of nitrite and nitrate: a review. Talanta. 165, 709-720(2017).

【13】Sreekumar N V, Narayana B, Hegde P et al. Determination of nitrite by simple diazotization method. Microchemical Journal. 74(1), 27-32(2003).

【14】Alokab R and Syed A. Novel reactions for simple and sensitive spectrophotometric determination of nitrite. Talanta. 72(4), 1239-1247(2007).

【15】He Y X and Li X Y. Influence of threshold method on calculation results of far-field spot quality. Chinese Journal of Lasers. 39(12), (2012).
贺元兴, 李新阳. 阈值法对激光远场焦斑质量测量和计算的影响. 中国激光. 39(12), (2012).

【16】Lu X C, Yuan Y H, Sun Y Q et al. Development of micro-spectrophotometer and its application in online hexavalent chromium water quality monitoring instrument. Laser & Optoelectronics Progress. 55(12), (2018).
卢欣春, 袁颖华, 孙颖奇 等. 微型分光光度计的研制及其在六价铬水质在线分析仪中的应用. 激光与光电子学进展. 55(12), (2018).

【17】Liu J, Feng P, Wei B et al. Design of acquisition and transmission system for water COD monitoring based on UV-VIS spectroscopy and wireless sensor networks. Laser & Optoelectronics Progress. 53(1), (2016).
刘娟, 冯鹏, 魏彪 等. 基于WSN的紫外-可见光谱水质COD监测仪采传系统设计. 激光与光电子学进展. 53(1), (2016).

【18】Li J G, Li Q Q, Lu C et al. Determination of nitrite in tap waters based on fluorosurfactant-capped gold nanoparticles-enhanced chemiluminescence from carbonate and peroxynitrous acid. The Analyst. 136(11), 2379-2384(2011).

【19】Cui Y P, Yang C Z, Zeng W et al. Electrochemical determination of nitrite using a gold nanoparticles-modified glassy carbon electrode prepared by the seed-mediated growth technique. Analytical Sciences. 23(12), 1421-1425(2007).

引用该论文

Chenyang Dong,Wenzhan Li,Zhihong Wang,Jintao Liang. Portable Nitrite Analyzer Based on Spectrophotometry[J]. Laser & Optoelectronics Progress, 2019, 56(18): 180102

董辰杨,李文湛,王志宏,梁晋涛. 基于分光光度法的便携式亚硝氮测定仪[J]. 激光与光电子学进展, 2019, 56(18): 180102

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF