首页 > 论文 > 激光与光电子学进展 > 56卷 > 23期(pp:231401--1)

大芯层尺寸Yb∶YAG晶体波导的设计

Design of Large-Core Yb∶YAG Crystal Waveguide

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

采用无胶键合(AFB)技术制备的晶体波导具有良好的模式限制作用。在考虑模式竞争的情况下,对晶体波导的单横模条件进行计算,得出在芯层材料为原子数分数为 1%的Yb∶YAG,内包层材料为原子数分数为0.5%的Er∶YAG中,芯层和内包层的单横模厚度范围。计算结果表明芯层厚度上限可以增大为传统计算结果的1.79倍,为同时实现大模场面积和单横模输出提供了理论支持。通过实验制备出芯层尺寸为320 μm×400 μm的大芯层尺寸Yb∶YAG晶体波导,并将该晶体波导作为增益介质搭建了晶体波导激光器,得到了1030 nm激光输出,其最高输出功率为26 W,斜率效率为31.5%,此时光束质量因子为 Mx2=1.22, My2=1.05。实验结果证明该晶体波导能够实现近衍射极限输出,引入模式竞争来实现大芯层尺寸晶体波导单横模输出的设计方法可靠。

Abstract

Crystal waveguides prepared by adhesive-free bonding techniques demonstrate strong mode-limiting effects. In this paper, the crystal waveguide''s single transverse mode condition is calculated in the context of mode competition. The single transverse mode thickness range of the core and inner cladding is obtained when the core material is Yb∶YAG with atomic number fraction of 1% and the inner cladding material is Er:YAG with atomic number fraction of 0.5%. Results from these calculations show that the maximum core thickness can be increased to approximately 1.79 times of the traditional calculation results obtained without mode competition. This finding provides theoretical support for the possibility of simultaneous large-mode area and single transverse mode output. A large-core Yb∶YAG crystal waveguide with a core size of 320 μm×400 μm is prepared in the experiment. The crystal waveguide is used as a gain medium to build a crystal waveguide laser that could output a 1030-nm laser. The laser''s maximum output power is 26 W, with a slope efficiency of 31.5% and beam quality factors of Mx2=1.22 and My2=1.05. These experimental results demonstrate that the crystal waveguide can achieve an output that approaches the diffraction limit. The introduction of mode competition is a reliable design method for achieving single transverse mode output in a large-core crystal waveguide.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.231401

所属栏目:激光器与激光光学

基金项目:国家自然科学基金、北京市自然科学资助项目、北京市自然科学基金;

收稿日期:2019-05-09

修改稿日期:2019-05-27

网络出版日期:2019-12-01

作者单位    点击查看

程德江:北京工业大学激光工程研究院, 北京 100124
胡星:北京工业大学激光工程研究院, 北京 100124
惠勇凌:北京工业大学激光工程研究院, 北京 100124
姜梦华:北京工业大学激光工程研究院, 北京 100124
雷訇:北京工业大学激光工程研究院, 北京 100124
李强:北京工业大学激光工程研究院, 北京 100124

联系人作者:雷訇(leihong@bjut.edu.cn); 李强(ncltlq@bjut.edu.cn);

备注:国家自然科学基金、北京市自然科学资助项目、北京市自然科学基金;

【1】Shepherd D P, Hettrick S J, Li C, et al. High-power planar dielectric waveguide lasers [J]. Journal of Physics D: Applied Physics. 2001, 34(16): 2420-2432.

【2】Chen Y J, Jiang H, Wang J T, et al. Planar waveguide oscillator with high output power and high efficiency [J]. Chinese Journal of Lasers. 2017, 44(4): 0401001.
陈月健, 姜豪, 王君涛, 等. 高功率高效率平面波导激光振荡器实验研究 [J]. 中国激光. 2017, 44(4): 0401001.

【3】Wang J T, Wang D, Su H, et al. Influence factors on efficiency of Nd∶YAG planar waveguide laser amplifier [J]. Chinese Journal of Lasers. 2017, 44(12): 1201005.
王君涛, 汪丹, 苏华, 等. Nd∶YAG平面波导激光放大器效率的影响因素 [J]. 中国激光. 2017, 44(12): 1201005.

【4】Chen S L, Liu Q, Meng J Q, et al. Research progress in planar waveguide lasers [J]. Laser & Optoelectronics Progress. 2017, 54(5): 050004.
陈思露, 刘琪, 孟俊清, 等. 平面波导激光器的研究进展 [J]. 激光与光电子学进展. 2017, 54(5): 050004.

【5】Ter-Gabrielyan N, Fromzel V, Mu X, et al. High efficiency, resonantly diode pumped, double-clad, Er∶YAG-core, waveguide laser [J]. Optics Express. 2012, 20(23): 25554-25561.

【6】Ter-Gabrielyan N, Fromzel V, Mu X, et al. Resonantly pumped single-mode channel waveguide Er∶YAG laser with nearly quantum defect limited efficiency [J]. Optics Letters. 2013, 38(14): 2431-2433.

【7】Mu X D, Meissner S, Meissner H. Laser diode pumped high efficiency Yb∶YAG crystalline fiber waveguide lasers [J]. Proceedings of SPIE. 2015, 9342: 934209.

【8】Li D, Lee H C, Meissner S K, et al. Laser performance and modeling of RE 3+∶YAG double-clad crystalline fiber waveguides [J]. Proceedings of SPIE. 2018, 10511: 105111Q.

【9】Li D, Hong P D, Meissner S K, et al. Design of intrinsically single-mode double clad crystalline fiber waveguides for high power lasers [J]. Proceedings of SPIE. 2016, 9744: 97441H.

【10】Okamoto K. Fundamentals of optical waveguides[M]. USA: , 2006, 29-31.

【11】Chiang K S. Finite-element analysis of optical fibres with iterative treatment of the infinite 2-D space [J]. Optical and Quantum Electronics. 1985, 17(6): 381-391.

【12】Chiang K S. Dual effective-index method for the analysis of rectangular dielectric waveguides [J]. Applied Optics. 1986, 25(13): 2169-2174.

【13】Wu T, Hui Y L, Yan Z, et al. Zygo interferometer for the precious measurement of tiny refractive index change of two laser crystals [J]. Optics & Laser Technology. 2017, 89: 196-199.

【14】Bhutta T. MacKenzie J I, Shepherd D P, et al. Spatial dopant profiles for transverse-mode selection in multimode waveguides [J]. Journal of the Optical Society of America B. 2002, 19(7): 1539-1543.

【15】Gong M L, Yuan Y Y, Li C, et al. Numerical modeling of transverse mode competition in strongly pumped multimode fiber lasers and amplifiers [J]. Optics Express. 2007, 15(6): 3236-3246.

【16】MacKenzie J I, Szela J W, Beecher S J, et al. . Crystal planar waveguides, a power scaling architecture for low-gain transitions [J]. IEEE Journal of Selected Topics in Quantum Electronics. 2015, 21(1): 380-389.

【17】Coldren L A, Corzine S W. Ma anovi M L. Diode lasers and photonic integrated circuits [M]. 2nd ed. Canada: John Wiley & Sons, Inc. 2012.

引用该论文

Cheng Dejiang,Hu Xing,Hui Yongling,Jiang Menghua,Lei Hong,Li Qiang. Design of Large-Core Yb∶YAG Crystal Waveguide[J]. Laser & Optoelectronics Progress, 2019, 56(23): 231401

程德江,胡星,惠勇凌,姜梦华,雷訇,李强. 大芯层尺寸Yb∶YAG晶体波导的设计[J]. 激光与光电子学进展, 2019, 56(23): 231401

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF