首页 > 论文 > 光学学报 > 40卷 > 18期(pp:1828002--1)

地球同步轨道目标天基合成孔径激光雷达成像理论模型

Theoretical Model on Geosynchronous Orbit Object Imaging with Space-Borne Synthetic Aperture Ladar

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

地球同步轨道(GEO)空间没有大气干扰,光束在GEO空间中传输不会衰减,也不会出现波面畸变,是合成孔径激光雷达(SAL)技术的理想应用场所。天基SAL可为GEO目标提供超衍射极限分辨率的光学图像。为了实现这一目标,利用在万有引力作用下绕地心沿不同圆周轨道运动的天基SAL和GEO目标的三维坐标关系,建立了基于光学外差探测的天基SAL成像理论模型,研究了与轨道参数有关的成像数据处理方法。研究结果表明,利用万有引力轨道运动,天基SAL能够对GEO目标实现超衍射极限分辨率成像;轨道半径、轨道平面夹角、成像位置等参数的变化会影响成像数据的处理过程,降低成像分辨率,造成聚焦图像的几何形变。交会点附近是天基SAL最佳的成像位置,此处天基SAL与GEO目标之间的距离近,聚焦图像的几何形变小,成像分辨率高。

Abstract

Geosynchronous orbit (GEO) space is an ideal place for the synthetic aperture ladar (SAL) technology because there is no atmospheric interference and no attenuation and wavefront distortion during beam transmission in it. A space-borne SAL can provide the optical image of a GEO target with ultra-diffraction-limited resolution. To realize this aim, we establish the theoretical model of space-borne SAL imaging based on optical heterodyne detection and investigate the imaging data processing methods related to the orbital parameters, using the three-dimensional coordinate relationship between the space-borne SAL and the GEO target moving along different circular orbits around the earth''s core under the effect of universal gravitation. The research results show that the space-borne SAL can produce super-diffraction-limit imaging of a GEO target using the gravitational orbital motion. Besides, the changes of orbit radius, orbital plane angle and imaging position show certain influence on the processing of imagining data, reduce imaging resolution and result in the geometric deformation of the focused image. Moreover, the position near the intersection points is the best position for space-borne SAL imaging, where the distance between the space-borne SAL and the GEO target is small, and thus the geometric deformation of focused images is small and the imaging resolution is high.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TN985

DOI:10.3788/AOS202040.1828002

所属栏目:遥感与传感器

收稿日期:2020-03-02

修改稿日期:2020-06-09

网络出版日期:2020-09-01

作者单位    点击查看

王德宾:中国科学院空天信息创新研究院, 北京 100094中国科学院大学电子电气与通信工程学院, 北京 100049
吴谨:中国科学院空天信息创新研究院, 北京 100094中国科学院大学电子电气与通信工程学院, 北京 100049
吴童:中国科学院空天信息创新研究院, 北京 100094中国科学院大学电子电气与通信工程学院, 北京 100049
柯佳仪:中国科学院空天信息创新研究院, 北京 100094中国科学院大学电子电气与通信工程学院, 北京 100049

联系人作者:吴谨(jwu@mail.ie.ac.cn)

【1】Bashkansky M, Lucke R L, Funk E E, et al. Two-dimensional synthetic aperture imaging in the optical domain [J]. Optics Letters. 2002, 27(22): 1983-1985.

【2】Beck S M, Buck J, Buell W F, et al. Synthetic-aperture imaging laser radar: laboratory demonstration and signal processing [J]. Applied Optics. 2005, 44(35): 7621-7629.

【3】Crouch S, Barber Z W. Laboratory demonstrations of interferometric and spotlight synthetic aperture ladar techniques [J]. Optics Express. 2012, 20(22): 24237-24246.

【4】Turbide S, Marchese L, Bergeron A, et al. Synthetic aperture ladar based on a MOPAW laser [J]. Proceedings of SPIE. 2016, 10005: 1000502.

【5】Wu J, Zhao Z L, Wu S D, et al. High resolution synthetic aperture ladar imaging at 12.9 m distance [J]. Acta Optica Sinica. 2015, 35(12): 1228002.
吴谨, 赵志龙, 吴曙东, 等. 12.9 m高分辨率合成孔径激光雷达成像 [J]. 光学学报. 2015, 35(12): 1228002.

【6】Wu S D, Huang J Y, Zhao Z L, et al. Experimental demonstration of spotlight mode synthetic aperture ladar [J]. Acta Optica Sinica. 2016, 36(6): 0628001.
吴曙东, 黄建余, 赵志龙, 等. 聚束模式合成孔径激光雷达实验演示 [J]. 光学学报. 2016, 36(6): 0628001.

【7】Li G Z, Wang R, Wang P S, et al. Synthetic aperture LADAR at 1550 nm: system demonstration, imaging processing and experimental result [J]. Proceedings of SPIE. 2016, 10155: 101553G.

【8】Wang N, Wang R, Li G Z, et al. Experiment of inverse synthetic aperture ladar at 1.1 km [J]. Proceedings of SPIE. 2016, 10155: 101551G.

【9】Krause B W, Buck J, Ryan C, et al. Synthetic aperture ladar flight demonstration . [C]∥CLEO: Applications and Technology 2011, May 1-6, 2011, Baltimore, Maryland. Washington, D. C. : OSA. 2011, PDPB7.

【10】Li G Z, Wang N, Wang R, et al. Imaging method for airborne SAL data [J]. Electronics Letters. 2017, 53(5): 351-353.

【11】Lu Z Y, Zhou Y, Sun J F, et al. Airborne down-looking synthetic aperture imaging ladar field experiment and its flight testing [J]. Chinese Journal of Lasers. 2017, 44(1): 0110001.
卢智勇, 周煜, 孙建峰, 等. 机载直视合成孔径激光成像雷达外场及飞行试验 [J]. 中国激光. 2017, 44(1): 0110001.

【12】Li D Y, Wu J, Wan L, et al. Elementary imaging theory on space-borne synthetic aperture ladar [J]. Acta Optica Sinica. 2019, 39(7): 0728002.
李丹阳, 吴谨, 万磊, 等. 天基合成孔径激光雷达成像理论初步 [J]. 光学学报. 2019, 39(7): 0728002.

【13】Li J M, Hu Y H, Wang E H, et al. Imaging of satellite-to-satellite synthetic aperture lidar [J]. Infrared and Laser Engineering. 2011, 40(9): 1668-1672.
李今明, 胡以华, 王恩宏, 等. 星对星合成孔径激光雷达成像 [J]. 红外与激光工程. 2011, 40(9): 1668-1672.

【14】Ruan H, Wu Y H, Zhang S X. Geostationary orbital object imaging based on spaceborne inverse synthetic aperture ladar [J]. Infrared and Laser Engineering. 2013, 42(6): 1611-1616.
阮航, 吴彦鸿, 张书仙. 基于天基逆合成孔径激光雷达的静止轨道目标成像 [J]. 红外与激光工程. 2013, 42(6): 1611-1616.

【15】Li D J, Du J B, Ma M, et al. System analysis of spaceborne synthetic aperture ladar [J]. Infrared and Laser Engineering. 2016, 45(11): 1130002.
李道京, 杜剑波, 马萌, 等. 天基合成孔径激光雷达系统分析 [J]. 红外与激光工程. 2016, 45(11): 1130002.

【16】Hu X, Li D J, Fu H C, et al. System analysis of ground-based inverse synthetic aperture lidar for geosynchronous orbit object imaging [J]. Acta Photonica Sinica. 2018, 47(6): 0601003.
胡烜, 李道京, 付瀚初, 等. 地球同步轨道空间目标地基逆合成孔径激光雷达系统分析 [J]. 光子学报. 2018, 47(6): 0601003.

【17】Hu X, Li D J. Space-based synthetic aperture lidar system with 10 m diffractive aperture [J]. Chinese Journal of Lasers. 2018, 45(12): 1210002.
胡烜, 李道京. 10 m衍射口径天基合成孔径激光雷达系统 [J]. 中国激光. 2018, 45(12): 1210002.

引用该论文

Wang Debin,Wu Jin,Wu Tong,Ke Jiayi. Theoretical Model on Geosynchronous Orbit Object Imaging with Space-Borne Synthetic Aperture Ladar[J]. Acta Optica Sinica, 2020, 40(18): 1828002

王德宾,吴谨,吴童,柯佳仪. 地球同步轨道目标天基合成孔径激光雷达成像理论模型[J]. 光学学报, 2020, 40(18): 1828002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF