首页 > 论文 > Chinese Optics Letters > 19卷 > 1期(p:013501)

Magnetically tunable Airy-like beam of magnetostatic surface spin waves [Editors' Pick]

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

In this Letter, we report an Airy-like beam of magnetostatic surface spin wave (AiBMSSW) supported on the ferromagnetic film, which is transferred from the optical field. The propagation properties of AiBMSSW were verified with micromagnetic simulation. From simulation results, the typical parabolic trajectory of the Airy-type beam was observed with an exciting source encoding 3/2 phase pattern. The simulation results coincide well with design parameters. Furthermore, simulated results showed that the trajectories of the AiBMSSW could be tuned readily with varied external magnetic fields. This work can extend the application scenario of spin waves.

广告组1.2 - 空间光调制器+DMD
补充资料

DOI:10.3788/COL202119.013501

所属栏目:Optics in Interdisciplinary Research

基金项目:This work was supported in part by the National Natural Science Foundation of China (Nos. 61975148 and 11535008).

收稿日期:2020-07-16

录用日期:2020-09-04

网络出版日期:2020-11-24

作者单位    点击查看

戴海涛:Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072, China
司马泰:Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072, China
肖爱香:Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072, China
薛永祥:Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072, China
郭子扬:Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072, China
张钰:Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072, China
张晓东:Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072, China
刘昌龙:Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072, China

联系人作者:戴海涛(htdai@tju.edu.cn)

备注:This work was supported in part by the National Natural Science Foundation of China (Nos. 61975148 and 11535008).

【1】G. A. Siviloglou and D. N. Christodoulides. Accelerating finite energy Airy beams. Opt. Lett. 32, (2007).

【2】B. Y. Wei, S. Liu, P. Chen, S. X. Qi, Y. Zhang, W. Hu, Y. Q. Lu and J. L. Zhao. Vortex Airy beams directly generated via liquid crystal q-Airy-plates. Appl. Phys. Lett. 112, (2018).

【3】B. Y. Wei, P. Chen, S. J. Ge, W. Duan, W. Hu and Y. Q. Lu. Generation of self-healing and transverse accelerating optical vortices. Appl. Phys. Lett. 109, (2016).

【4】G. A. Siviloglou, J. Broky, A. Dogariu and D. N. Christodoulides. Observation of accelerating Airy beams. Phys. Rev. Lett. 99, (2007).

【5】P. Zhang, J. Prakash, Z. Zhang, M. S. Mills, N. K. Efremidis, D. N. Christodoulides and Z. Chen. Trapping and guiding microparticles with morphing autofocusing Airy beams. Opt. Lett. 36, (2011).

【6】W. Liu, D. N. Neshev, I. V. Shadrivov, A. E. Miroshnichenko and Y. S. Kivshar. Plasmonic Airy beam manipulation in linear optical potentials. Opt. Lett. 36, (2011).

【7】D. G. Papazoglou, N. K. Efremidis, D. N. Christodoulides and S. Tzortzakis. Observation of abruptly autofocusing waves. Opt. Lett. 36, (2011).

【8】M. O. Williams, C. W. McGrath and J. N. Kutz. Light-bullet routing and control with planar waveguide arrays. Opt. Express. 18, (2010).

【9】Y. Hu, S. Huang, P. Zhang, C. B. Lou, J. J. Xu and Z. G. Chen. Persistence and breakdown of Airy beams driven by an initial nonlinearity. Opt. Lett. 35, (2010).

【10】T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. K. Ferrier, T. Cizmar, F. J. Gunn-Moore and K. Dholakia. Light-sheet microscopy using an Airy beam. Nat. Methods. 11, (2014).

【11】J. Wang, X. W. Hua, C. L. Guo, W. H. Liu and S. Jia. Airy-beam tomographic microscopy. Optica. 7, (2020).

【12】M. Manousidaki, D. G. Papazoglou, M. Farsari and S. Tzortzakis. Abruptly autofocusing beams enable advanced multiscale photo-polymerization. Optica. 3, (2016).

【13】D. G. GrierD. G. Grier. A revolution in optical manipulation. Nature. 424, (2003).

【14】J. Baumgartl, M. Mazilu and K. Dholakia. Optically mediated particle clearing using Airy wavepackets. Nat. Photon. 2, (2008).

【15】N. K. Efremidis, Z. G. Chen, M. Segev and D. N. Christodoulides. Airy beams and accelerating waves: an overview of recent advances. Optica. 6, (2019).

【16】A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev and Y. S. Kivshar. Generation and near-field imaging of Airy surface plasmons. Phys. Rev. Lett. 107, (2011).

【17】P. Saari and K. Reivelt. Evidence of X-shaped propagation-invariant localized light waves. Phys. Rev. Lett. 79, (1997).

【18】D. Abdollahpour, S. Suntsov, D. G. Papazoglou and S. Tzortzakis. Spatiotemporal Airy light bullets in the linear and nonlinear regimes. Phys. Rev. Lett. 105, (2010).

【19】F. G. MitriF. G. Mitri. Airy acoustical–sheet spinner tweezers. J. Appl. Phys. 120, (2016).

【20】S. H. Fu, Y. Tsur, J. Y. Zhou, L. Shemer and A. Arie. Propagation dynamics of Airy water-wave pulses. Phys. Rev. Lett. 115, (2015).

【21】P. Gruszecki and M. Krawczyk. Spin-wave beam propagation in ferromagnetic thin films with graded refractive index: Mirage effect and prospective applications. Phys. Rev. B. 97, (2018).

【22】V. E. Demidov, S. Urazhdin and S. O. Demokritov. Control of spin-wave phase and wavelength by electric current on the microscopic scale. Appl. Phys. Lett. 95, (2009).

【23】V. E. Demidov, J. Jersch, S. O. Demokritov, K. Rott, P. Krzysteczko and G. Reiss. Transformation of propagating spin-wave modes in microscopic waveguides with variable width. Phys. Rev. B. 79, (2009).

【24】K. Vogt, F. Y. Fradin, J. E. Pearson, T. Sebastian, S. D. Bader, B. Hillebrands, A. Hoffmann and H. Schultheiss. Realization of a spin-wave multiplexer. Nat. Comm. 5, (2014).

【25】K. Wagner, A. Kákay, K. Schultheiss, A. Henschke, T. Sebastian and H. Schultheiss. Magnetic domain walls as reconfigurable spin-wave nanochannels. Nat. Nanotechnol. 11, (2016).

【26】H. T. Dai, A. X. Xiao, D. S. Wang, Y. X. Xue, M. N. Gao, X. D. Zhang, C. L. Liu and Q. N. Li. The focusing properties of spin wave with Fresnel lens phase profile. J. Magn. Magn. Mater. 505, (2020).

【27】J. N. Toedt, M. Mundkowski, D. Heitmann, S. Mendach and W. Hansen. Design and construction of a spin-wave lens. Sci. Rep. 6, (2016).

【28】T. Schneider, A. A. Serga, A. V. Chumak, C. W. Sandweg, S. Trudel, S. Wolff, M. P. Kostylev, V. S. Tiberkevich, A. N. Slavin and B. Hillebrands. Nondiffractive subwavelength wave beams in a medium with externally controlled anisotropy. Phys. Rev. Lett. 104, (2010).

【29】V. E. Demidov, S. O. Demokritov, D. Birt, B. O’Gorman, M. Tsoi and X. Li. Radiation of spin waves from the open end of a microscopic magnetic-film waveguide. Phys. Rev. B. 80, (2009).

【30】X. Yan, L. X. Guo, M. J. Cheng and S. R. Chai. Free-space propagation of autofocusing Airy vortex beams with controllable intensity gradients. Chin. Opt. Lett. 17, (2019).

【31】Y. Zhang, B. Y. Wei, S. Liu, P. Li, X. Chen, Y. L. Wu, X. A. Dou and J. L. Zhao. Circular Airy beams realized via the photopatterning of liquid crystals. Chin. Opt. Lett. 18, (2020).

【32】D. M. Cottrell, J. A. Davis and T. M. Hazard. Direct generation of accelerating Airy beams using a 3/2 phase-only pattern. Opt. Lett. 34, (2009).

【33】R. W. Damon and J. R. Eshbach. Magnetostatic modes of a ferromagnetic slab. J. Appl. Phys. 31, (1960).

【34】B. A. Kalinikos and A. N. Slavin. Theory of dipole-exchange spin wave spectrum for ferromagnetic films with mixed exchange boundary conditions. J. Phys. C. 19, (1986).

【35】A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez and B. V. Waeyenberge. The design and verification of MuMax3. AIP. Adv. 4, (2014).

【36】N. J. Whitehead, S. A. R. Horsley, T. G. Philbin and V. V. Kruglyak. A Luneburg lens for spin waves. Appl. Phys. Lett. 113, (2018).

【37】H. Hata, T. Moriyama, K. Tanabe, K. Kobayashi, R. Matsumoto, S. Murakami, J. Ohe, D. Chiba and T. Ono. Micromagnetic simulation of spin wave propagation in a ferromagnetic film with different thicknesses. J. Magn. Soc. Jpn. 39, (2015).

【38】H. T. Dai, Y. J. Liu, D. Luo and X. W. Sun. Propagation properties of an optical vortex carried by an Airy beam: experimental implementation. Opt. Lett. 36, (2011).

引用该论文

Haitao Dai, Zolkefl A. Y. Mohamed, Aixiang Xiao, Yongxiang Xue, Ziyang Guo, Yu Zhang, Xiaodong Zhang, Changlong Liu, "Magnetically tunable Airy-like beam of magnetostatic surface spin waves," Chinese Optics Letters 19(1), 013501 (2021)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF