首页 > 论文 > 中国激光 > 47卷 > 10期(pp:1006001--1)

10 kW高效率1070 nm光纤放大器的理论与实验研究

Theoretical and Experimental Investigation of a 10-kW High-Efficiency 1070-nm Fiber Amplifier

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于掺镱光纤激光放大器理论模型,分析了光纤放大器中掺镱光纤弯曲半径对模式传输损耗的影响以及掺镱光纤长度对系统光-光转换效率的影响。结合实验中采用的掺镱光纤的特点,对掺镱光纤的弯曲半径及光纤长度进行了优化设计。基于主振荡放大结构中,种子光源的输出功率为170 W,光束质量为 M2x=1.10, M2y=1.05;放大器采用双端抽运的方式,使用自研30/600 μm掺镱光纤,最终实现了输出功率为10.14 kW,中心波长为1070.36 nm,3 dB带宽为5.32 nm的全光纤激光输出,光束质量为 M2x=3.12, M2y=3.18。放大级最大光-光转换效率为87.9%,斜率效率为89.2%,输出激光信噪比大于45 dB。

Abstract

Based on the theoretical model of ytterbium (Yb 3+)-doped fiber amplifier, the effect of the bend radius of Yb 3+ fiber on the mode transmission loss and dependence of optical-optical efficiency on the fiber length were analyzed. By employing the characteristics of the Yb 3+ fiber used in the experiment, the bend radius and fiber length were optimized. A master oscillation power amplification configuration was used. This configuration had a seed laser source with 170 W power, beam quality M2x=1.10, M2y=1.05, and a power amplifier with homemade 30/600 μm Yb 3+ fiber as the gain fiber. Dual-end pumping was adopted. We obtained a laser beam with an output power of 10.14 kW, a central wavelength of 1070.36 nm, and a 3 dB bandwidth of 5.32 nm. The beam quality of the output laser was M2x=3.12, M2y=3.18. In the amplification stage, the maximum optical-optical efficiency was 87.9%, and the slope efficiency reached up to 89.2%. The signal-to-noise ratio of the output laser was more than 45 dB.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O436

DOI:10.3788/CJL202047.1006001

所属栏目:光纤光学与光通信

基金项目:广东省重点领域研发计划、国家自然科学基金、上海市自然科学基金、上海市青年英才扬帆计划;

收稿日期:2020-04-07

修改稿日期:2020-05-13

网络出版日期:2020-10-01

作者单位    点击查看

陈晓龙:中国科学院上海光学精密机械研究所上海市全固态激光器与应用技术重点实验室, 上海 201800中国科学院大学材料与光电研究中心, 北京 100049
何宇:中国科学院上海光学精密机械研究所上海市全固态激光器与应用技术重点实验室, 上海 201800
徐中巍:中国科学院上海光学精密机械研究所上海市全固态激光器与应用技术重点实验室, 上海 201800
郭晓晨:中国科学院上海光学精密机械研究所上海市全固态激光器与应用技术重点实验室, 上海 201800
叶韧:中国科学院上海光学精密机械研究所上海市全固态激光器与应用技术重点实验室, 上海 201800
刘恺:中国科学院上海光学精密机械研究所上海市全固态激光器与应用技术重点实验室, 上海 201800
杨依枫:中国科学院上海光学精密机械研究所上海市全固态激光器与应用技术重点实验室, 上海 201800
沈辉:中国科学院上海光学精密机械研究所上海市全固态激光器与应用技术重点实验室, 上海 201800
张海波:中国科学院上海光学精密机械研究所上海市全固态激光器与应用技术重点实验室, 上海 201800
于春雷:中国科学院上海光学精密机械研究所中科院强激光材料重点实验室, 上海 201800
何兵:中国科学院上海光学精密机械研究所上海市全固态激光器与应用技术重点实验室, 上海 201800
胡丽丽:中国科学院上海光学精密机械研究所中科院强激光材料重点实验室, 上海 201800
周军:中国科学院上海光学精密机械研究所上海市全固态激光器与应用技术重点实验室, 上海 201800

联系人作者:何兵(bryanho@siom.ac.cn)

备注:广东省重点领域研发计划、国家自然科学基金、上海市自然科学基金、上海市青年英才扬帆计划;

【1】Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives (Invited) [J]. Journal of the Optical Society of America B. 2010, 27(11): B63-B92.Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives (Invited) [J]. Journal of the Optical Society of America B. 2010, 27(11): B63-B92.

【2】Zervas M N. High power ytterbium-doped fiber lasers: fundamentals and applications [J]. International Journal of Modern Physics B. 2014, 28(12): 1442009.

【3】Zervas M N, Codemard C A. High power fiber lasers: a review [J]. IEEE Journal of Selected Topics in Quantum Electronics. 2014, 20(5): 219-241.Zervas M N, Codemard C A. High power fiber lasers: a review [J]. IEEE Journal of Selected Topics in Quantum Electronics. 2014, 20(5): 219-241.

【4】Zhou J, Wang P, Zhou P. The introduction of “High-power fiber laser technology” special issue [J]. Chinese Journal of Lasers. 2017, 44(2): 0201000.
周军, 王璞, 周扑. “高功率光纤激光技术”专题前言 [J]. 中国激光. 2017, 44(2): 0201000.

【5】Agrawal G P. Nonlinear fiber optics[M]. New York: , 2001.

【6】Dawson J W, Messerly M J, Beach R J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power [J]. Optics Express. 2008, 16(17): 13240-13266.

【7】Smith R G. Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering [J]. Applied Optics. 1972, 11(11): 2489-2494.

【8】Haarlammert N, Sattler B, Liem A, et al. Optimizing mode instability in low-NA fibers by passive strategies [J]. Optics Letters. 2015, 40(10): 2317-2320.

【9】Jauregui C, Eidam T, Otto H J, et al. Physical origin of mode instabilities in high-power fiber laser systems [J]. Optics Express. 2012, 20(12): 12912-12925.

【10】Tao R M, Ma P F, Wang X L, et al. -03-30)[2020-03-28] . https:∥arxiv. 2015, org/abs/1503: 08132.

【11】Zhu J J, Zhou P, Ma Y X, et al. Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers [J]. Optics Express. 2011, 19(19): 18645-18654.

【12】Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers [J]. Nature Photonics. 2013, 7(11): 861-867.

【13】Eidam T, Wirth C, Jauregui C, et al. Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers [J]. Optics Express. 2011, 19(14): 13218-13224.

【14】Zhou P, Huang L J, Leng J Y, et al. High-power double-cladding fiber laser: 30th anniversary of the development process [J]. SCIENTIA SINICA Technologica. 2020, 50(2): 123-135.
周朴, 黄良金, 冷进勇, 等. 高功率双包层光纤激光器: 30周年的发展历程 [J]. 中国科学技术科学. 2020, 50(2): 123-135.

【15】Stiles E. New developments in IPG fiber laser technology . [C]∥Proceedings of the 5th International Workshop on Fiber Lasers, September 30-October 1, Dresden, Germany. New York: ACM. 2009, 1-2.

【16】Lin H H, Tang X, Li C Y, et al. The localization single-fiber laser system obtained 10.6 kW laser output [J]. Chinese Journal of Lasers. 2018, 45(3): 0315001.
林宏奂, 唐选, 李成钰, 等. 全国产单纤激光系统获得10.6 kW激光输出 [J]. 中国激光. 2018, 45(3): 0315001.

【17】Lin A X, Zhan H, Peng K, et al. 10 kW-level pump-gain integrated functional laser fiber [J]. High Power Laser and Particle Beams. 2018, 30(6): 060101.
林傲祥, 湛欢, 彭昆, 等. 国产复合功能光纤实现万瓦激光输出 [J]. 强激光与粒子束. 2018, 30(6): 060101.

【18】Gao C, Dai J Y, Li F Y, et al. Homemade 10-kW ytterbium-doped aluminophosphosilicate fiber for tandem pumping [J]. Chinese Journal of Lasers. 2020, 47(3): 0315001.
高聪, 代江云, 李峰云, 等. 自研万瓦级同带泵浦掺镱石英玻璃光纤 [J]. 中国激光. 2020, 47(3): 0315001.

【19】Marcuse D. Curvature loss formula for optical fibers [J]. Journal of the Optical Society of America. 1976, 66(3): 216-220.

【20】Schermer R T, Cole J H. Improved bend loss formula verified for optical fiber by simulation and experiment [J]. IEEE Journal of Quantum Electronics. 2007, 43(10): 899-909.

【21】Hansen K R, Alkeskjold T T, Broeng J, et al. Thermo-optical effects in high-power Ytterbium-doped fiber amplifiers [J]. Optics Express. 2011, 19(24): 23965-23980.

【22】Gong M L, Yuan Y Y, Li C, et al. Numerical modeling of transverse mode competition in strongly pumped multimode fiber lasers and amplifiers [J]. Optics Express. 2007, 15(6): 3236-3246.

【23】Wang J M, Yan D P, Xiong S S, et al. High power all-fiber amplifier with different seed power injection [J]. Optics Express. 2016, 24(13): 14463-14469.

引用该论文

Chen Xiaolong,He Yu,Xu Zhongwei,Guo Xiaochen,Ye Ren,Liu Kai,Yang Yifeng,Shen Hui,Zhang Haibo,Yu Chunlei,He Bing,Hu Lili,Zhou Jun. Theoretical and Experimental Investigation of a 10-kW High-Efficiency 1070-nm Fiber Amplifier[J]. Chinese Journal of Lasers, 2020, 47(10): 1006001

陈晓龙,何宇,徐中巍,郭晓晨,叶韧,刘恺,杨依枫,沈辉,张海波,于春雷,何兵,胡丽丽,周军. 10 kW高效率1070 nm光纤放大器的理论与实验研究[J]. 中国激光, 2020, 47(10): 1006001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF