首页 > 论文 > Photonics Research > 8卷 > 9期(pp:1541-1550)

Towards the integration of nanoemitters by direct laser writing on optical glass waveguides

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

A major challenge towards nanophotonics is the integration of nanoemitters on optical chips. Combining the optical properties of nanoemitters with the benefits of integration and scalability of integrated optics is still a major issue to overcome. In this work, we demonstrate the integration of nanoemitters positioned in a controlled manner onto a substrate and onto an optical ion-exchanged glass waveguide via direct laser writing based on two-photon polymerization. Our nanoemitters are colloidal CdSe/ZnS quantum dots (QDs) embedded in polymeric nanostructures. By varying the laser parameters during the patterning process, we make size-controlled QD-polymer nanostructures that were systematically characterized using optical and structural methods. Structures as small as 17 nm in height were fabricated. The well-controlled QD-polymer nanostructure systems were then successfully integrated onto a new photonic platform for nanophotonics made of an ion-exchanged waveguide. We show that our QDs maintain their light emitting quality after integration as verified by photoluminescence (PL) measurements. Ultimately, QD emission coupled to our waveguides is detected through a home-built fiber-edge coupling PL measurement setup. Our results show the potential for future integration of nanoemitters onto complex photonic chips.

广告组1.2 - 空间光调制器+DMD
补充资料

DOI:10.1364/PRJ.392706

所属栏目:Integrated Optics

基金项目:H2020 Marie Sk?odowska-Curie Actions10.13039/100010665; European Regional Development Fund10.13039/501100008530; Agence Nationale de la Recherche10.13039/501100001665; China Scholarship Council10.13039/501100004543;

收稿日期:2020-04-03

录用日期:2020-07-10

网络出版日期:2020-07-22

作者单位    点击查看

Xiaolun Xu:Light, nanomaterials, nanotechnologies (L2n), ERL 7004, CNRS. University of Technology of Troyes, 12 rue Marie Curie, 10004 Troyes Cedex, France
Aurélie Broussier:Light, nanomaterials, nanotechnologies (L2n), ERL 7004, CNRS. University of Technology of Troyes, 12 rue Marie Curie, 10004 Troyes Cedex, France
Tiziana Ritacco:Light, nanomaterials, nanotechnologies (L2n), ERL 7004, CNRS. University of Technology of Troyes, 12 rue Marie Curie, 10004 Troyes Cedex, France
Mackrine Nahra:Light, nanomaterials, nanotechnologies (L2n), ERL 7004, CNRS. University of Technology of Troyes, 12 rue Marie Curie, 10004 Troyes Cedex, France
Fabien Geoffray:Teem Photonics, 61 Chemin du Vieux Chêne, 38246 Meylan, France
Ali Issa:Light, nanomaterials, nanotechnologies (L2n), ERL 7004, CNRS. University of Technology of Troyes, 12 rue Marie Curie, 10004 Troyes Cedex, France
Safi Jradi:Light, nanomaterials, nanotechnologies (L2n), ERL 7004, CNRS. University of Technology of Troyes, 12 rue Marie Curie, 10004 Troyes Cedex, France
Renaud Bachelot:Light, nanomaterials, nanotechnologies (L2n), ERL 7004, CNRS. University of Technology of Troyes, 12 rue Marie Curie, 10004 Troyes Cedex, France;Key Laboratory of Advanced Display and System Application, Ministry of Education, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, China;Sino-European School of Technology, Shanghai University, Shanghai 200044, China
Christophe Couteau:Light, nanomaterials, nanotechnologies (L2n), ERL 7004, CNRS. University of Technology of Troyes, 12 rue Marie Curie, 10004 Troyes Cedex, France;e-mail: christophe.couteau@utt.fr
Sylvain Blaize:Light, nanomaterials, nanotechnologies (L2n), ERL 7004, CNRS. University of Technology of Troyes, 12 rue Marie Curie, 10004 Troyes Cedex, France;e-mail: sylvain.blaize@utt.fr

联系人作者:Christophe Couteau(christophe.couteau@utt.fr); Sylvain Bla(sylvain.blaize@utt.fr);

备注:H2020 Marie Sk?odowska-Curie Actions10.13039/100010665; European Regional Development Fund10.13039/501100008530; Agence Nationale de la Recherche10.13039/501100001665; China Scholarship Council10.13039/501100004543;

【1】C. P. Dietrich, A. Fiore, M. G. Thompson, M. Kamp and S. H?fling. GaAs integrated quantum photonics: towards compact and multi‐functional quantum photonic integrated circuits. Laser Photon. Rev. 10, 870-894(2016).

【2】S. L. Portalupi, G. Hornecker, V. Giesz, T. Grange, A. Lema?tre, J. Demory, I. Sagnes, N. D. Lanzillotti-Kimura, L. Lanco and A. Auffèves. Bright phonon-tuned single-photon source. Nano Lett. 15, 6290-6294(2015).

【3】P. Senellart, G. Solomon and A. White. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026-1039(2017).

【4】J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne and J.-M. Gérard. A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nat. Photonics. 4, 174-177(2010).

【5】L. Sapienza, M. Davan?o, A. Badolato and K. Srinivasan. Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission. Nat. Commun. 6, (2015).

【6】M. Pelton, C. Santori, J. Vuckovi?, B. Zhang, G. S. Solomon, J. Plant and Y. Yamamoto. Efficient source of single photons: a single quantum dot in a micropost microcavity. Phys. Rev. Lett. 89, (2002).

【7】D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto and J. Vu?kovi?. Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. Phys. Rev. Lett. 95, (2005).

【8】M. Arcari, I. S?llner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song and S. Stobbe. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Phys. Rev. Lett. 113, (2014).

【9】A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant and N. F. van Hulst. Unidirectional emission of a quantum dot coupled to a nanoantenna. Science. 329, 930-933(2010).

【10】P. Schnauber, A. Singh, J. Schall, S. I. Park, J. D. Song, S. Rodt, K. Srinivasan, S. Reitzenstein and M. Davanco. Indistinguishable photons from deterministically integrated single quantum dots in heterogeneous GaAs/Si3N4 quantum photonic circuits. (2019).

【11】W. Xie, R. Gomes, T. Aubert, S. Bisschop, Y. Zhu, Z. Hens, E. Brainis and D. Van Thourhout. Nanoscale and single-dot patterning of colloidal quantum dots. Nano Lett. 15, 7481-7487(2015).

【12】C. H. Woo, P. M. Beaujuge, T. W. Holcombe, O. P. Lee and J. M. J. Fréchet. Incorporation of furan into low band-gap polymers for efficient solar cells. J. Am. Chem. Soc. 132, 15547-15549(2010).

【13】Y. Cui, M. T. Bj?rk, J. A. Liddle, C. S?nnichsen, B. Boussert and A. P. Alivisatos. Integration of colloidal nanocrystals into lithographically patterned devices. Nano Lett. 4, 1093-1098(2004).

【14】K. Santhosh, O. Bitton, L. Chuntonov and G. Haran. Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit. Nat. Commun. 7, (2016).

【15】L. Jauffred, A. C. Richardson and L. B. Oddershede. Three-dimensional optical control of individual quantum dots. Nano Lett. 8, 3376-3380(2008).

【16】R. A. Jensen, I.-C. Huang, O. Chen, J. T. Choy, T. S. Bischof, M. Lon?ar and M. G. Bawendi. Optical trapping and two-photon excitation of colloidal quantum dots using bowtie apertures. ACS Photon. 3, 423-427(2016).

【17】I. E. Zadeh, A. W. Elshaari, K. D. J?ns, A. Fognini, D. Dalacu, P. J. Poole, M. E. Reimer and V. Zwiller. Deterministic integration of single photon sources in silicon based photonic circuits. Nano Lett. 16, 2289-2294(2016).

【18】J.-H. Kim, S. Aghaeimeibodi, C. J. K. Richardson, R. P. Leavitt, D. Englund and E. Waks. Hybrid integration of solid-state quantum emitters on a silicon photonic chip. Nano Lett. 17, 7394-7400(2017).

【19】S. J. P. Kress, P. Richner, S. V. Jayanti, P. Galliker, D. K. Kim, D. Poulikakos and D. J. Norris. Near-field light design with colloidal quantum dots for photonics and plasmonics. Nano Lett. 14, 5827-5833(2014).

【20】H. Siampour, S. Kumar and S. I. Bozhevolnyi. Nanofabrication of plasmonic circuits containing single photon sources. ACS Photon. 4, 1879-1884(2017).

【21】H.-B. Sun, K. Takada, M.-S. Kim, K.-S. Lee and S. Kawata. Scaling laws of voxels in two-photon photopolymerization nanofabrication. Appl. Phys. Lett. 83, 1104-1106(2003).

【22】G. Von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch and M. Wegener. Three‐dimensional nanostructures for photonics. Adv. Funct. Mater. 20, 1038-1052(2010).

【23】B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee and D. McCord-Maughon. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature. 398, 51-54(1999).

【24】M. Farsari and B. N. Chichkov. Materials processing: two-photon fabrication. Nat. Photonics. 3, 450-452(2009).

【25】S. Maruo, O. Nakamura and S. Kawata. Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt. Lett. 22, 132-134(1997).

【26】M. J. Smith, C. H. Lin, S. Yu and V. V. Tsukruk. Composite structures with emissive quantum dots for light enhancement. Adv. Opt. Mater. 7, (2019).

【27】J.-J. Park, P. Prabhakaran, K. K. Jang, Y. Lee, J. Lee, K. Lee, J. Hur, J.-M. Kim, N. Cho and Y. Son. Photopatternable quantum dots forming quasi-ordered arrays. Nano Lett. 10, 2310-2317(2010).

【28】R. Krini, C. W. Ha, P. Prabhakaran, H. El Mard, D. Yang, R. Zentel and K. Lee. Photosensitive functionalized surface‐modified quantum dots for polymeric structures via two‐photon‐initiated polymerization technique. Macromol. Rapid Commun. 36, 1108-1114(2015).

【29】S.-K. Park, X. Teng, J. Jung, P. Prabhakaran, C. W. Ha and K.-S. Lee. Photopatternable cadmium-free quantum dots with ene-functionalization. Opt. Mater. Express. 7, 2440-2449(2017).

【30】T. H. Au, S. Buil, X. Quélin, J.-P. Hermier and N. D. Lai. Photostability and long-term preservation of a colloidal semiconductor-based single photon emitter in polymeric photonic structures. Nanoscale Adv. 1, 3225-3231(2019).

【31】Q. Shi, B. Sontheimer, N. Nikolay, A. W. Schell, J. Fischer, A. Naber, O. Benson and M. Wegener. Wiring up pre-characterized single-photon emitters by laser lithography. Sci. Rep. 6, (2016).

【32】A. Tervonen, S. K. Honkanen and B. R. West. Ion-exchanged glass waveguide technology: a review. Opt. Eng. 50, (2011).

【33】Y. Peng, S. Jradi, X. Yang, M. Dupont, F. Hamie, X. Q. Dinh, X. W. Sun, T. Xu and R. Bachelot. 3D photoluminescent nanostructures containing quantum dots fabricated by two‐photon polymerization: influence of quantum dots on the spatial resolution of laser writing. Adv. Mater. Technol. 4, (2019).

【34】K. Obata, A. El-Tamer, L. Koch, U. Hinze and B. N. Chichkov. High-aspect 3D two-photon polymerization structuring with widened objective working range (WOW-2PP). Light Sci. Appl. 2, (2013).

【35】T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Fr?lich, T. Kennerknecht, C. Eberl, M. Thiel and M. Wegener. Tailored 3D mechanical metamaterials made by dip‐in direct‐laser‐writing optical lithography. Adv. Mater. 24, 2710-2714(2012).

【36】X. Zhou, Y. Hou and J. Lin. A review on the processing accuracy of two-photon polymerization. AIP Adv. 5, (2015).

【37】H.-B. Sun, M. Maeda, K. Takada, J. W. M. Chon, M. Gu and S. Kawata. Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization. Appl. Phys. Lett. 83, 819-821(2003).

【38】H.-B. Sun and S. Kawata. Two-photon photopolymerization and 3D lithographic microfabrication. NMR ? 3D Analysis ? Photopolymerization. : Springer, 169-273(2004).

【39】F. Aloui, L. Lecamp, P. Lebaudy and F. Burel. Refractive index evolution of various commercial acrylic resins during photopolymerization. Express Polym. Lett. 12, 966-971(2018).

【40】M. Schmid, D. Ludescher and H. Giessen. Optical properties of photoresists for femtosecond 3D printing: refractive index, extinction, luminescence-dose dependence, aging, heat treatment and comparison between 1-photon and 2-photon exposure. Opt. Mater. Express. 9, 4564-4577(2019).

【41】M. Elie, S. Gaillard, J. L. Renaud and R. D. Costa. Light-Emitting Electrochemical Cells: Concepts, Advances and Challenges. : Springer, (2017).

【42】O. V. Yaroshchuk and L. O. Dolgov. Electro-optics and structure of polymer dispersed liquid crystals doped with nanoparticles of inorganic materials. Opt. Mater. 29, 1097-1102(2007).

【43】V. Mirkhani, F. Tong, D. Song, Y. Chung, B. Ozden, K. Yapabandara, M. Hamilton, D.-J. Kim, H. Koo and K. K. Lee. Simulation of the refractive index of Ga doped ZnO nanoparticles embedded in PEDOT: PSS using effective medium approximations. J. Nanosci. Nanotechnol. 16, 7358-7362(2016).

【44】M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. D. M. Cardoso, V. Verma, R. Mirin, S. W. Nam, L. Liu and K. Srinivasan. Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices. Nat. Commun. 8, (2017).

【45】B. Chen, H. Wu, C. Xin, D. Dai and L. Tong. Flexible integration of free-standing nanowires into silicon photonics. Nat. Commun. 8, (2017).

【46】V. S. C. M. Rao and S. Hughes. Single quantum dot spontaneous emission in a finite-size photonic crystal waveguide: proposal for an efficient “on chip” single photon gun. Phys. Rev. Lett. 99, (2007).

【47】E. Jordan, F. Geoffray, A. Bouchard, E. Ghibaudo and J.-E. Broquin. Development of Tl+/Na+ ion-exchanged single-mode waveguides on silicate glass for visible-blue wavelengths applications. Ceram. Int. 41, 7996-8001(2015).

【48】J. S. Varsanik and J. J. Bernstein. Integrated optic/nanofluidic fluorescent detection device with plasmonic excitation. J. Micromech. Microeng. 23, (2013).

【49】A. W. Snyder and J. Love. Optical Waveguide Theory. : Springer, (2012).

【50】A. P. AlivisatosA. P. Alivisatos. Semiconductor clusters, nanocrystals, and quantum dots. Science. 271, 933-937(1996).

【51】J. Cui, A. P. Beyler, I. Coropceanu, L. Cleary, T. R. Avila, Y. Chen, J. M. Cordero, S. L. Heathcote, D. K. Harris and O. Chen. Evolution of the single-nanocrystal photoluminescence linewidth with size and shell: implications for exciton-phonon coupling and the optimization of spectral linewidths. Nano Lett. 16, 289-296(2015).

【52】W. van der Stam, M. de Graaf, S. Gudjonsdottir, J. J. Geuchies, J. J. Dijkema, N. Kirkwood, W. H. Evers, A. Longo and A. J. Houtepen. Tuning and probing the distribution of Cu+ and Cu2+ trap states responsible for broad-band photoluminescence in CuInS2 nanocrystals. ACS Nano. 12, 11244-11253(2018).

【53】P. J. Whitham, A. Marchioro, K. E. Knowles, T. B. Kilburn, P. J. Reid and D. R. Gamelin. Single-particle photoluminescence spectra, blinking, and delayed luminescence of colloidal CuInS2 nanocrystals. J. Phys. Chem. C. 120, 17136-17142(2016).

【54】P. O. Anikeeva, J. E. Halpert, M. G. Bawendi and V. Bulovic. Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum. Nano Lett. 9, 2532-2536(2009).

【55】S. Jun, E. Jang, J. Park and J. Kim. Photopatterned semiconductor nanocrystals and their electroluminescence from hybrid light-emitting devices. Langmuir. 22, 2407-2410(2006).

【56】K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto and Y. Arakawa. Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity. Nat. Photonics. 2, 688-692(2008).

【57】P. Prabhakaran, W. J. Kim, K.-S. Lee and P. N. Prasad. Quantum dots (QDs) for photonic applications. Opt. Mater. Express. 2, 578-593(2012).

【58】J. B. Madrigal, R. Tellez-Limon, F. Gardillou, D. Barbier, W. Geng, C. Couteau, R. Salas-Montiel and S. Blaize. Hybrid integrated optical waveguides in glass for enhanced visible photoluminescence of nanoemitters. Appl. Opt. 55, 10263-10268(2016).

【59】A. J. Fischer, P. D. Anderson, D. D. Koleske and G. Subramania. Deterministic placement of quantum-size controlled quantum dots for seamless top-down integration. ACS Photon. 4, 2165-2170(2017).

引用该论文

Xiaolun Xu, Aurélie Broussier, Tiziana Ritacco, Mackrine Nahra, Fabien Geoffray, Ali Issa, Safi Jradi, Renaud Bachelot, Christophe Couteau, and Sylvain Blaize, "Towards the integration of nanoemitters by direct laser writing on optical glass waveguides," Photonics Research 8(9), 1541-1550 (2020)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF