首页 > 论文 > Photonics Research > 9卷 > 1期(pp:54-65)

Superior single-mode lasing in a self-assembly CsPbX3 microcavity over an ultrawide pumping wavelength range

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

All-inorganic perovskite micro/nanolasers are emerging as a class of miniaturized coherent photonic sources for many potential applications, such as optical communication, computing, and imaging, owing to their ultracompact sizes, highly localized coherent output, and broadband wavelength tunability. However, to achieve single-mode laser emission in the microscale perovskite cavity is still challenging. Herein, we report unprecedented single-mode laser operations at room temperature in self-assembly CsPbX3 microcavities over an ultrawide pumping wavelength range of 400–2300 nm, covering one- to five-photon absorption processes. The superior frequency down- and upconversion single-mode lasing manifests high multiphoton absorption efficiency and excellent optical gain from the electron–hole plasma state in the perovskite microcavities. Through direct compositional modulation, the wavelength of a single-mode CsPbX3 microlaser can be continuously tuned from blue-violet to green (427–543 nm). The laser emission remains stable and robust after long-term high-intensity excitation for over 12 h (up to 4.3×107 excitation cycles) in the ambient atmosphere. Moreover, the pump-wavelength dependence of the threshold, as well as the detailed lasing dynamics such as the gain-switching and electron–hole plasma mechanisms, are systematically investigated to shed insight into the more fundamental issues of the lasing processes in CsPbX3 perovskite microcavities.

广告组1.2 - 空间光调制器+DMD
补充资料

DOI:10.1364/PRJ.409884

所属栏目:Research Articles

基金项目:National Natural Science Foundation of China10.13039/501100001809; Program of Shanghai Science and Technology Committee; Strategic Priority Research Program of ECNU of China; Research Funds of MoE Nanophotonics & Advanced Instrument Engineering Research Center; Fundamental Research Funds for the Central Universities10.13039/501100012226; Japan Society for the Promotion of Science10.13039/501100001691;

收稿日期:2020-09-10

录用日期:2020-11-06

网络出版日期:2020-11-06

作者单位    点击查看

Guoen Weng:Department of Electronic Engineering, East China Normal University, Shanghai 200241, China;e-mail: egweng@ee.ecnu.edu.cn
Jiyu Yan:Department of Electronic Engineering, East China Normal University, Shanghai 200241, China
Shengjie Chen:Department of Electronic Engineering, East China Normal University, Shanghai 200241, China
Chunhu Zhao:Department of Electronic Engineering, East China Normal University, Shanghai 200241, China
Hanbing Zhang:Department of Electronic Engineering, East China Normal University, Shanghai 200241, China
Jiao Tian:Department of Electronic Engineering, East China Normal University, Shanghai 200241, China
Yuejun Liu:Department of Electronic Engineering, East China Normal University, Shanghai 200241, China
Xiaobo Hu:Department of Electronic Engineering, East China Normal University, Shanghai 200241, China
Jiahua Tao:Ministry of Education Nanophotonics & Advanced Instrument Engineering Research Center, East China Normal University, Shanghai 200241, China
Shaoqiang Chen:Department of Electronic Engineering, East China Normal University, Shanghai 200241, China;Ministry of Education Nanophotonics & Advanced Instrument Engineering Research Center, East China Normal University, Shanghai 200241, China;Shanghai Institute of Intelligent Electronics & Systems, Fudan University, Shanghai 200433, China;e-mail: sqchen@ee.ecnu.edu.cn
Ziqiang Zhu:Department of Electronic Engineering, East China Normal University, Shanghai 200241, China
Hidefumi Akiyama:Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
Junhao Chu:Department of Electronic Engineering, East China Normal University, Shanghai 200241, China;Ministry of Education Nanophotonics & Advanced Instrument Engineering Research Center, East China Normal University, Shanghai 200241, China

联系人作者:Guoen Weng(egweng@ee.ecnu.edu.cn); Shaoqiang Chen(sqchen@ee.ecnu.edu.cn);

备注:National Natural Science Foundation of China10.13039/501100001809; Program of Shanghai Science and Technology Committee; Strategic Priority Research Program of ECNU of China; Research Funds of MoE Nanophotonics & Advanced Instrument Engineering Research Center; Fundamental Research Funds for the Central Universities10.13039/501100012226; Japan Society for the Promotion of Science10.13039/501100001691;

【1】M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith and C. M. Lieber. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature. 415, 617-620(2002).

【2】X. Duan, Y. Huang, R. Agarwal and C. M. Lieber. Single-nanowire electrically driven lasers. Nature. 421, 241-245(2003).

【3】R. Yan, D. Gargas and P. Yang. Nanowire photonics. Nat. Photonics. 3, 569-576(2009).

【4】Y. Li, Y. Zhang, L. Zhang and A. W. Poon. Silicon and hybrid silicon photonic devices for intra-datacenter applications: state of the art and perspectives. Photon. Res. 3, B10-B27(2015).

【5】E. Knill, R. Laflamme and G. J. Milburn. A scheme for efficient quantum computation with linear optics. Nature. 409, 46-52(2001).

【6】W. W. Chow, F. Jahnke and C. Gies. Emission properties of nanolasers during the transition to lasing. Light Sci. Appl. 3, (2014).

【7】R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee and P. Yang. Nanowire-based single-cell endoscopy. Nat. Nanotechnol. 7, 191-196(2012).

【8】K. Wang, G. Li, S. Wang, S. Liu, W. Sun, C. Huang, Y. Wang, Q. Song and S. Xiao. Dark-field sensors based on organometallic halide perovskite microlasers. Adv. Mater. 30, (2018).

【9】Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt and P. Yang. Tunable nanowire nonlinear optical probe. Nature. 447, 1098-1101(2007).

【10】K. Wang, S. Wang, S. Xiao, N. Zhang, Y. J. Wang, W. Yang, Y. H. Wang, C. Zhang, W. Sun and Q. Song. Single-crystalline perovskite microlasers for high-contrast and sub-diffraction imaging. Adv. Funct. Mater. 29, (2019).

【11】L. Pan and D. B. Bogy. Data storage: heat-assisted magnetic recording. Nat. Photonics. 3, 189-190(2009).

【12】S. W. Eaton, A. Fu, A. B. Wong, C.-Z. Ning and P. Yang. Semiconductor nanowire lasers. Nat. Rev. Mater. 1, (2016).

【13】Q. Zhang, S. T. Ha, X. Liu, T. C. Sum and Q. Xiong. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers. Nano Lett. 14, 5995-6001(2014).

【14】H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin and X.-Y. Zhu. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 14, 636-642(2015).

【15】B. R. Sutherland, S. Hoogland, M. M. Adachi, C. T. O. Wong and E. H. Sargent. Conformal organohalide perovskites enable lasing on spherical resonators. ACS Nano. 8, 10947-10952(2014).

【16】F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D.-D. Jarausch, R. Higler, S. Hüttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atatüre, R. T. Phillips and R. H. Friend. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J. Phys. Chem. Lett. 5, 1421-1426(2014).

【17】J. Xing, X. F. Liu, Q. Zhang, S. T. Ha, Y. W. Yuan, C. Shen, T. C. Sum and Q. Xiong. Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers. Nano Lett. 15, 4571-4577(2015).

【18】P. Liu, X. He, J. Ren, Q. Liao, J. Yao and H. Fu. Organic-inorganic hybrid perovskite nanowire laser arrays. ACS Nano. 11, 5766-5773(2017).

【19】S. W. Eaton, M. Lai, N. A. Gibson, A. B. Wong, L. Dou, J. Ma, L.-W. Wang, S. R. Leone and P. Yang. Lasing in robust cesium lead halide perovskite nanowires. Proc. Natl. Acad. Sci. USA. 113, 1993-1998(2016).

【20】Y. Fu, H. Zhu, C. C. Stoumpos, Q. Ding, J. Wang, M. G. Kanatzidis, X. Zhu and S. Jin. Broad wavelength tunable robust lasing from single-crystal nanowires of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). ACS Nano. 10, 7963-7972(2016).

【21】Q. Zhang, R. Su, X. Liu, J. Xing, T. C. Sum and Q. Xiong. High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets. Adv. Funct. Mater. 26, 6238-6245(2016).

【22】Y. Wang, X. Guan, D. Li, H.-C. Cheng, X. Duan, Z. Lin and X. Duan. Chemical vapor deposition growth of single-crystalline cesium lead halide microplatelets and heterostructures for optoelectronic applications. Nano Res. 10, 1223-1233(2017).

【23】B. Tang, H. Dong, L. Sun, W. Zheng, Q. Wang, F. Sun, X. Jiang, A. Pan and L. Zhang. Single-mode lasers based on cesium lead halide perovskite submicron spheres. ACS Nano. 11, 10681-10688(2017).

【24】H. Zhou, S. Yuan, X. Wang, T. Xu, X. Wang, H. Li, W. Zheng, P. Fan, Y. Li, L. Sun and A. Pan. Vapor growth and tunable lasing of band gap engineered cesium lead halide perovskite micro/nanorods with triangular cross section. ACS Nano. 11, 1189-1195(2017).

【25】B. Zhou, H. Dong, M. Jiang, W. Zheng, L. Sun, B. Zhao, B. Tang, A. Pan and L. Zhang. Single-mode lasing and 3D confinement from perovskite micro-cubic cavity. J. Mater. Chem. C. 6, 11740-11748(2018).

【26】X. X. Wang, H. Chen, H. Zhou, X. Wang, S. Yuan, Z. Yang, X. Zhu, R. Ma and A. Pan. Room-temperature high-performance CsPbBr3 perovskite tetrahedral microlasers. Nanoscale. 11, 2393-2400(2019).

【27】H. Zhang, C. Zhao, S. J. Chen, J. Tian, J. Yan, G. Weng, X. Hu, J. Tao, Y. Pan, S. Q. Chen, H. Akiyama and J. Chu. Lasing operation in the CsPbBr3 perovskite micron hemisphere cavity grown by chemical vapor deposition. Chem. Eng. J. 389, (2020).

【28】H. He, E. Ma, X. Chen, D. Yang, B. Chen and G. Qian. Single crystal perovskite microplate for high-order multiphoton excitation. Small Methods. 3, (2019).

【29】K. Wang, W. Sun, S. Wang, S. Liu, N. Zhang, S. Xiao and Q. Song. Single crystal microrod based homonuclear photonic molecule lasers. Adv. Opt. Mater. 5, (2017).

【30】Q. Wei, X. Li, C. Liang, Z. Zhang, J. Guo, G. Hong, G. Xing and W. Huang. Recent progress in metal halide perovskite micro- and nanolasers. Adv. Opt. Mater. 7, (2019).

【31】Z. Liu, S. Huang, J. Du, C. Wang and Y. Leng. Advances in inorganic and hybrid perovskites for miniaturized lasers. Nanophotonics. 9, 2251-2272(2020).

【32】G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Gr?tzel, S. Mhaisalkar and T. C. Sum. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. 13, 476-480(2014).

【33】S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. D. Luca, M. Fiebig, W. Heiss and M. V. Kovalenko. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat. Commun. 6, (2015).

【34】C. Qin, A. S. D. Sandanayaka, C. Zhao, T. Matsushima, D. Zhang, T. Fujihara and C. Adachi. Stable room-temperature continuous-wave lasing in quasi-2D perovskite films. Nature. 585, 53-57(2020).

【35】C. Huang, C. Zhang, S. Xiao, Y. Wang, Y. Fan, Y. Liu, N. Zhang, G. Qu, H. Ji, J. Han, L. Ge, Y. Kivshar and Q. Song. Ultrafast control of vortex microlasers. Science. 367, 1018-1021(2020).

【36】L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh and M. V. Kovalenko. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692-3696(2015).

【37】Y. Wang, X. Li, J. Song, L. Xiao, H. Zeng and H. Sun. All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics. Adv. Mater. 27, 7101-7108(2015).

【38】Y. Fu, H. Zhu, A. W. Schrader, D. Liang, Q. Ding, P. Joshi, L. Hwang, X.-Y. Zhu and S. Jin. Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability. Nano Lett. 16, 1000-1008(2016).

【39】X. X. Wang, H. Zhou, S. Yuan, W. Zheng, Y. Jiang, X. Zhuang, H. Liu, Q. Zhang, X. Zhu, X. Wang and A. Pan. Cesium lead halide perovskite triangular nanorods as high-gain medium and effective cavities for multiphoton-pumped lasing. Nano Res. 10, 3385-3395(2017).

【40】Z. Liu, C. Wang, Z. Hu, J. Du, J. Yang, Z. Zhang, T. Shi, W. Liu, X. Tang and Y. Leng. Mode selection and high-quality upconversion lasing from perovskite CsPb2Br5 microplates. Photon. Res. 8, A31-A38(2020).

【41】Z. Hu, Z. Liu, Y. Bian, D. Liu, X. Tang, W. Hu, Z. Zang, M. Zhou, L. Sun, J. Tang, Y. Li, J. Du and Y. Leng. Robust cesium lead halide perovskite microcubes for frequency upconversion lasing. Adv. Opt. Mater. 5, (2017).

【42】B. Zhou, M. Jiang, H. Dong, W. Zheng, Y. Huang, J. Han, A. Pan and L. Zhang. High-temperature upconverted single-mode lasing in 3D fully inorganic perovskite microcubic cavity. ACS Photon. 6, 793-801(2019).

【43】L. W. CaspersonL. W. Casperson. Threshold characteristics of multimode laser oscillators. J. Appl. Phys. 46, 5194-5201(1975).

【44】W. Zheng, X. Xiong, R. Lin, Z. Zhang, C. Xu and F. Huang. Balanced photodetection in one-step liquid-phase-synthesized CsPbBr3 micro-/nanoflake single crystals. ACS Appl. Mater. Interfaces. 10, 1865-1870(2018).

【45】M. V. Kelso, N. K. Mahenderkar, Q. Chen, J. Z. Tubbesing and J. A. Switzer. Spin coating epitaxial films. Science. 364, 166-169(2019).

【46】C. C. Stoumpos, C. D. Malliakas and M. G. Kanatzidis. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019-9038(2013).

【47】G. E. Eperon, G. M. Paternò, R. J. Sutton, A. Zampetti, A. A. Haghighirad, F. Cacialli and H. J. Snaith. Inorganic caesium lead iodide perovskite solar cell. J. Mater. Chem. A. 3, 19688-19695(2015).

【48】A. Swarnkar, A. R. Marshall, E. M. Sanehira, B. D. Chernomordik, D. T. Moore, J. A. Christians, T. Chakrabarti and J. M. Luther. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science. 354, 92-95(2016).

【49】B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D’Haen, L. D’Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F. De Angelis and H.-G. Boyen. Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv. Energy Mater. 5, (2015).

【50】Y. Liao, H. Liu, W. Zhou, D. Yang, Y. Shang, Z. Shi, B. Li, X. Jiang, L. Zhang, L. N. Quan, R. Q. Bermudez, B. R. Sutherland, Q. Mi, E. H. Sargent and Z. Ning. Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance. J. Am. Chem. Soc. 139, 6693-6699(2017).

【51】S. Masi, F. Aiello, A. Listorti, F. Balzano, D. Altamura, C. Giannini, R. Caliandro, G. U. Barretta, A. Rizzo and S. Colella. Connecting the solution chemistry of PbI2 and MAI: a cyclodextrin-based supramolecular approach to the formation of hybrid halide perovskites. Chem. Sci. 9, 3200-3208(2018).

【52】D. Wei, H. Huang, P. Cui, J. Ji, S. Dou, E. Jia, S. Sajid, M. Cui, L. Chu, Y. Li, B. Jiang and M. Li. Moisture-tolerant supermolecule for the stability enhancement of organic-inorganic perovskite solar cells in ambient air. Nanoscale. 11, 1228-1235(2019).

【53】Z. Liu, J. Yang, J. Du, Z. Hu, T. Shi, Z. Zhang, Y. Liu, X. Tang, Y. Leng and R. Li. Robust subwavelength single-mode perovskite nanocuboid laser. ACS Nano. 12, 5923-5931(2018).

【54】S. Kreinberg, W. W. Chow, J. Wolters, C. Schneider, C. Gies, F. Jahnke, S. H?fling, M. Kamp and S. Reitzenstein. Emission from quantum-dot high-β microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling. Light Sci. Appl. 6, (2017).

【55】T.-C. Lu, J.-R. Chen, S.-W. Chen, H.-C. Kuo, C.-C. Kuo, C.-C. Lee and S.-C. Wang. Development of GaN-based vertical-cavity surface-emitting lasers. IEEE J. Sel. Top. Quantum Electron. 15, 850-860(2009).

【56】G. Weng, S. Chen, Y. Mei, Y. Liu, H. Akiyama, X. Hu, J. Liu, B. Zhang and J. Chu. Multiwavelength GaN-based surface-emitting lasers and their design principles. Ann. Phys. 532, (2020).

【57】Y. Mei, G. Weng, B. Zhang, J. Liu, W. Hofmann, L. Ying, J. Zhang, Z. Li, H. Yang and H.-C. Kuo. Quantum dot vertical-cavity surface-emitting lasers covering the ‘green gap’. Light Sci. Appl. 6, (2017).

【58】G. Weng, Y. Mei, J. Liu, W. Hofmann, L. Ying, J. Zhang, Y. Bu, Z. Li, H. Yang and B. Zhang. Low threshold continuous-wave lasing of yellow-green InGaN-QD vertical-cavity surface-emitting lasers. Opt. Express. 24, 15546-15553(2016).

【59】Y. Higuchi, K. Omae, H. Matsumura and T. Mukai. Room-temperature CW lasing of a GaN-based vertical-cavity surface-emitting laser by current injection. Appl. Phys. Express. 1, (2008).

【60】L. N. Quan, B. P. Rand, R. H. Friend, S. G. Mhaisalkar, T.-W. Lee and E. H. Sargent. Perovskites for next-generation optical sources. Chem. Rev. 119, 7444-7477(2019).

【61】M. A. Green, A. H. Baillie and H. J. Snaith. The emergence of perovskite solar cells. Nat. Photonics. 8, 506-514(2014).

【62】S. J. J. Kwok, N. Martino, P. H. Dannenberg and S.-H. Yun. Multiplexed laser particles for spatially resolved single-cell analysis. Light Sci. Appl. 8, (2019).

【63】Y. Peng, W. Lu, P. Ren, Y. Ni, Y. Wang, L. Zhang, Y. Zeng, W. Zhang and S. Ruan. Integration of nanoscale light emitters: an efficient ultraviolet and blue random lasing from NaYF4:Yb/Tm hexagonal nanocrystals. Photon. Res. 6, 943-947(2018).

【64】P. Zhang, W. Steelant, M. Kumar and M. Scholfield. Versatile photosensitizers for photodynamic therapy at infrared excitation. J. Am. Chem. Soc. 129, 4526-4527(2007).

【65】J. E. Ehrlich, X. L. Wu, I.-Y. S. Lee, Z.-Y. Hu, H. R?ckel, S. R. Marder and J. W. Perry. Two-photon absorption and broadband optical limiting with bis-donor stilbenes. Opt. Lett. 22, 1843-1845(1997).

【66】W. Chen, S. Bhaumik, S. A. Veldhuis, G. Xing, Q. Xu, M. Gr?tzel, S. Mhaisalkar, N. Mathews and T. C. Sum. Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals. Nat. Commun. 8, (2017).

【67】A. Manzi, Y. Tong, J. Feucht, E.-P. Yao, L. Polavarapu, A. S. Urban and J. Feldmann. Resonantly enhanced multiple exciton generation through below-band-gap multi-photon absorption in perovskite nanocrystals. Nat. Commun. 9, (2018).

【68】J. H. Yu, S.-H. Kwon, Z. Petrá?ek, O. K. Park, S. W. Jun, K. Shin, M. Choi, Y. I. Park, K. Park, H. B. Na, N. Lee, D. W. Lee, J. H. Kim, P. Schwille and T. Hyeon. High-resolution three-photon biomedical imaging using doped ZnS nanocrystals. Nat. Mater. 12, 359-366(2013).

【69】M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, A. G. Lehmann, C. Cannas, A. Musinu, F. Quochi, A. Mura and G. Bongiovanni. Correlated electron-hole plasma in organometal perovskites. Nat. Commun. 5, (2014).

【70】A. P. Schlaus, M. S. Spencer, K. Miyata, F. Liu, X. Wang, I. Datta, M. Lipson, A. Pan and X.-Y. Zhu. How lasing happens in CsPbBr3 perovskite nanowires. Nat. Commun. 10, (2019).

【71】R. R?der and C. Ronning. Review on the dynamics of semiconductor nanowier lasers. Semicond. Sci. Technol. 33, (2018).

【72】J. Yang, X. Wen, H. Xia, R. Sheng, Q. Ma, J. Kim, P. Tapping, T. Harada, T. W. Kee, F. Huang, Y.-B. Cheng, M. Green, A. H. Baillie, S. Huang, S. Shrestha, R. Patterson and G. Conibeer. Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites. Nat. Commun. 8, (2017).

【73】T. Ito, H. Nakamae, Y. Hazama, T. Nakamura, S. Chen, M. Yoshita, C. Kim, Y. Kobayashi and H. Akiyama. Femtosecond pulse generation beyond photon lifetime limit in gain-switched semiconductor lasers. Commun. Phys. 1, (2018).

【74】S. Chen, T. Ito, A. Asahara, M. Yoshita, W. Liu, J. Zhang, B. Zhang, T. Suemoto and H. Akiyama. Spectral dynamics of picosecond gain-switched pulses from nitride-based vertical-cavity surface-emitting lasers. Sci. Rep. 4, (2014).

【75】G. Weng, J. Xue, J. Tian, X. Hu, X. Bao, H. Lin, S. Chen, Z. Zhu and J. Chu. Picosecond random lasing based on three-photon absorption in organometallic halide CH3NH3PbBr3 perovskite thin films. ACS Photon. 5, 2951-2959(2018).

【76】J. Tatebayashi, S. Kako, J. Ho, Y. Ota, S. Iwamoto and Y. Arakawa. Room-temperature lasing in a single nanowire with quantum dots. Nat. Photonics. 9, 501-505(2015).

【77】J. C. Johnson, H. Yan, P. Yang and R. J. Saykally. Optical cavity effects in ZnO nanowire lasers and waveguides. J. Phys. Chem. B. 107, 8816-8828(2003).

【78】A. P. Schlaus, M. S. Spencer and X.-Y. Zhu. Light-matter interaction and lasing in lead halide perovskites. Acc. Chem. Res. 52, 2950-2959(2019).

【79】Q. Han, J. Wang, J. Lu, L. Sun, F. Lyu, H. Wang, Z. Chen and Z. Wang. Transition between exciton-polarition and coherent photonic lasing in all-inorganic perovskite microcuboid. ACS Photon. 7, 454-462(2020).

【80】S. Mitsubori, I. Katayama, S. H. Lee, T. Yao and J. Takeda. Ultrafast lasing due to electron-hole plasma in ZnO nano-multipods. J. Phys. Condens. Matter. 21, (2009).

【81】J. Dai, C. X. Xu, P. Wu, J. Y. Guo, Z. H. Li and Z. L. Shi. Exciton and electron-hole plasma lasing in ZnO dodecagonal whispering-gallery-mode microcavities at room temperature. Appl. Phys. Lett. 97, (2010).

【82】J. Fallert, F. Stelzl, H. Zhou, A. Reiser, K. Thonke, R. Sauer, C. Klingshirn and H. Kalt. Lasing dynamics in single ZnO nanorods. Opt. Express. 16, 1125-1131(2008).

【83】S. Peng, G. Xing and Z. Tang. Hot electron-hole plasma dynamics and amplified spontaneous emission in ZnTe nanowires. Nanoscale. 9, 15612-15621(2017).

【84】M. He, Y. Jiang, Q. Liu, Z. Luo, C. Ouyang, X. X. Wang, W. Zheng, K. Braun, A. J. Meixner, T. Gao, X. Wang and A. Pan. Revealing excitonic and electron-hole plasma states in stimulated emission of single CsPbBr3 nanowires at room temperature. Phys. Rev. Appl. 13, (2020).

引用该论文

Guoen Weng, Jiyu Yan, Shengjie Chen, Chunhu Zhao, Hanbing Zhang, Jiao Tian, Yuejun Liu, Xiaobo Hu, Jiahua Tao, Shaoqiang Chen, Ziqiang Zhu, Hidefumi Akiyama, and Junhao Chu, "Superior single-mode lasing in a self-assembly CsPbX3 microcavity over an ultrawide pumping wavelength range," Photonics Research 9(1), 54-65 (2021)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF