首页 > 论文 > 激光与光电子学进展 > 56卷 > 18期(pp:180401--1)

小型高分辨率金属码盘光电编码器

Small Metal Code Disk Based Photoelectric Encoder with High Resolution

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

研制了一种基于单圈金属码盘的小型绝对式光电编码器,其采用低刻划密度单圈绝对式编码方式和基于线阵图像探测器的译码方式。为进一步提高测角分辨率,提出了基于金属码盘的亚像素级差值细分算法,并阐述了精码与粗码的衔接方法;使用金属码盘设计了小型绝对式光电编码器,并对其进行了测试。试制了光电编码器,在直径为38 mm的金属码盘上刻划了256条单圈绝对式码道;采用亚像素级细分实现了2048倍的角度细分。所设计的单圈绝对式光电编码器外径小于50 mm,分辨率达到2.47″。通过实验得到测角误差均方差为16.3″。该编码器的研制提高了小型光电编码器的抗震动和抗冲击性能,为特种编码器的研制提供了技术基础。

Abstract

A type of photoelectric encoder using a metal code disk is developed. First, a low-density, single-ring absolute coding is proposed; then, a decoding method based on a line array image sensor is proposed. A sub-pixel D-value subdivision method based on the metal code disk is studied to further improve angular resolution, and a method for the link of fine codes and coarse codes is proposed. A small absolute photoelectric encoder using metal code disk is designed and tested. 256 single-ring absolute coding tracks are carved on the ?38 mm metal disk, and the sub-pixel subdivision realizes 2048 times angular subdivision. The exterior diameter of the designed encoder is less than 50 mm, and its resolution is up to 2.47″. Experimental results show that the angular measurement error is 16.3″. The development of this encoder will enhance the resistance vibration and impact abilities of small photoelectric encoder, and will provide technical foundation for encoders of specialized use.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.180401

所属栏目:探测器

基金项目:吉林省高等教育教学改革重点基金 、吉林大学实验技术基金;

收稿日期:2019-02-27

修改稿日期:2019-04-09

网络出版日期:2019-09-01

作者单位    点击查看

汪雨冰:吉林大学电子科学与工程学院, 吉林 长春 130012
王睿:吉林大学电子科学与工程学院, 吉林 长春 130012
于永江:吉林大学电子科学与工程学院, 吉林 长春 130012
杨罕:吉林大学电子科学与工程学院, 吉林 长春 130012

联系人作者:汪雨冰(wangyubingwj@sina.com)

备注:吉林省高等教育教学改革重点基金 、吉林大学实验技术基金;

【1】Yu H, Wan Q H, Lu X R et al. A robust sub-pixel subdivision algorithm for image-type angular displacement measurement. Optics and Lasers in Engineering. 100, 234-238(2018).

【2】Yu H, Wan Q H, Lu X R et al. Small-size, high-resolution angular displacement measurement technology based on an imaging detector. Applied Optics. 56(3), 755-760(2017).

【3】Yu H, Wan Q H, Zhao C H et al. A high-resolution subdivision algorithm for photographic encoders and its error analysis. Acta Optica Sinica. 37(3), (2017).
于海, 万秋华, 赵长海 等. 图像式光电编码器高分辨力细分算法及误差分析. 光学学报. 37(3), (2017).

【4】Dong J, Wan Q H, Yu H et al. Automatic detection system of fault code for small size absolute photoelectric encoder. Chinese Optics. 9(6), 695-703(2016).
董静, 万秋华, 于海 等. 小型绝对式光电编码器误码自动检测系统. 中国光学. 9(6), 695-703(2016).

【5】Dong J, Wan Q H, Zhao C H et al. Current situation and prospect of fault diagnosis for photoelectric encoder. Chinese Optics. 8(5), 755-767(2015).
董静, 万秋华, 赵长海 等. 光电编码器故障诊断技术研究现状与展望. 中国光学. 8(5), 755-767(2015).

【6】Huang L, Pan N, Ma W L et al. Error analysis and experimentation of scale tape encoder. Chinese Optics. 8(3), 464-470(2015).
黄龙, 潘年, 马文礼 等. 拼接式编码器测角误差分析及试验. 中国光学. 8(3), 464-470(2015).

【7】Mancini D, Cascone E and Schipani P. Galileo high-resolution encoder system. Proceedings of SPIE. 3112, 328-334(1997).

【8】Tang T J, Cao X Q and Lin B. Developing current situation and the trend of photoelectric-angular encoder. Optical Instruments. 27(1), 90-96(2005).
汤天瑾, 曹向群, 林斌. 光电轴角编码器发展现状分析及展望. 光学仪器. 27(1), 90-96(2005).

【9】Xiong J W and Wan Q H. 23 bit photoelectric rotary encoder. Optics Machinery. 2, 52-60(1990).
熊经武, 万秋华. 23位光电轴角编码器. 光学机械. 2, 52-60(1990).

【10】Chen Y, Sun C P and He H Y. Research on the encoding method of single ring absolute code disc. Acta Photonica Sinica. 35(3), 460-463(2006).
陈赟, 孙承浦, 何惠阳. 单圈绝对式码盘编码方法的研究. 光子学报. 35(3), 460-463(2006).

【11】Wang Y Y, Wan Q H, Liang L H et al. Miniature absolute metal photoelectric code disc Instrument Technique and Sensor. 2013(6), 20-23(0).
王媛媛, 万秋华, 梁立辉 等. 小型绝对式金属光电编码盘 仪表技术与传感器. 2013(6), 20-23(0).

【12】Leviton D B and Frey B. Ultrahigh-resolution absolute position sensors for cryostatic applications. Proceedings of SPIE. 4850, 776-787(2003).

【13】Leviton D B and Garza M S. Recent advances and applications of NASA''''s new ultrahigh-sensitivity absolute optical pattern recognition encoders. Proceedings of SPIE. 4091, 375-384(2000).

【14】Sugiyama Y, Matsui Y, Toyoda H et al. A 3.2 kHz, 14-bit optical absolute rotary encoder with a CMOS profile sensor. IEEE Sensors Journal. 8(8), 1430-1436(2008).

【15】Tresanchez M, Pallejà T, Teixidó M et al. Using the image acquisition capabilities of the optical mouse sensor to build an absolute rotary encoder. Sensors and Actuators A: Physical. 157(1), 161-167(2010).

【16】Kim J A, Kim J W, Kang C S et al. Absolute angle measurement using a phase-encoded binary graduated disk. Measurement. 80, 288-293(2016).

【17】Wang Y N, Yuan B and Ni X X. Subdivision technique of absolute angular encoder using array detector. Journal of Zhejiang University(Engineering Science). 45(2), 370-374(2011).
王英男, 袁波, 倪旭翔. 基于面阵探测器的绝对轴角编码器的细分技术. 浙江大学学报(工学版). 45(2), 370-374(2011).

【18】Du Y C, Song L, Wan Q H et al. High resolution absolute code disk based on linear array image sensor. Acta Optica Sinica. 36(11), (2016).
杜颖财, 宋路, 万秋华 等. 基于线阵图像传感器的高分辨力单圈绝对式编码方法. 光学学报. 36(11), (2016).

引用该论文

Yubing Wang,Rui Wang,Yongjiang Yu,Han Yang. Small Metal Code Disk Based Photoelectric Encoder with High Resolution[J]. Laser & Optoelectronics Progress, 2019, 56(18): 180401

汪雨冰,王睿,于永江,杨罕. 小型高分辨率金属码盘光电编码器[J]. 激光与光电子学进展, 2019, 56(18): 180401

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF