首页 > 论文 > 激光与光电子学进展 > 57卷 > 21期(pp:210001--1)

多晶材料随机准相位匹配研究进展 (封面文章)

Research Progress on Random Quasi-Phase Matching in Polycrystalline Materials (Cover Paper)

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

由非线性晶体颗粒烧结成的多晶材料在宏观上是各向同性的,但由于各晶粒取向的随机分布,激光与其发生作用时产生的非线性极化存在相干增强的可能,且非线性转换效率统计均值与互作用长度存在线性关系,这被称作随机准相位匹配(RQPM)。与双折射相位匹配(BPM)及准相位匹配(QPM)相比, 多晶材料的RQPM在带宽方面具有明显优势,因此多晶材料在宽带飞秒激光的频率变换中具有重要意义。近年来,基于多晶材料RQPM的差频(DFG)、倍频(SHG)及高效率光参量振荡器(OPO)等相继诞生,为实现超连续谱及宽带光频梳提供了一种低成本的新选择。对RQPM技术与理论的发展过程及研究现状进行了综述,对超宽带RQPM频率变换的最新重要成果进行了讨论,介绍了多晶陶瓷处理及建模的基本方法,并展望了RQPM发展前景,以期能够为国内超快激光及非线性光学频率变换等领域的研究提供参考。

Abstract

Although polycrystalline materials sintered from nonlinear crystal grains are macroscopically isotropic, the random distribution of grain orientation makes it possible that coherent enhancement of nonlinear polarization occurs when laser interacts with them. Meanwhile, the statistical average value of nonlinear conversion efficiency is proportional to the interaction length. Thus it is called random quasi-phase matching (RQPM). RQPM in polycrystalline materials has a distinct advantage in bandwidth over birefringence phase matching (BPM) and quasi-phase matching (QPM), thus polycrystalline materials are of great significance in frequency conversion for broadband femtosecond lasers. Recently, difference frequency generation (DFG), second harmonic generation (SHG), efficient optical parametric oscillation (OPO), and so on, have been realized based on RQPM in polycrystalline materials, which offers a new low-cost option for supercontinuum and broadband optical frequency combs. This paper summarizes the history and status of the technology and theories of RQPM, discusses the latest achievements on ultra-broadband frequency conversion, introduces the processing and modelling methods of polycrystalline materials, and gives an outlook on the development of RQPM. It is expected that this review can give references to domestic researchers in the fields of ultrafast lasers, nonlinear frequency conversion, etc.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O437

DOI:10.3788/LOP57.210001

所属栏目:综述

基金项目:国家自然科学基金、天津市自然科学基金;

收稿日期:2020-05-07

修改稿日期:2020-06-24

网络出版日期:2020-11-01

作者单位    点击查看

刘科飞:天津大学精密仪器与光电子工程学院激光与光电子研究所, 天津 300072天津大学光电信息技术教育部重点实验室, 天津 300072
钟凯:天津大学精密仪器与光电子工程学院激光与光电子研究所, 天津 300072天津大学光电信息技术教育部重点实验室, 天津 300072
姚建铨:天津大学精密仪器与光电子工程学院激光与光电子研究所, 天津 300072天津大学光电信息技术教育部重点实验室, 天津 300072

联系人作者:钟凯(zhongkai@tju.edu.cn)

备注:国家自然科学基金、天津市自然科学基金;

【1】Powers P E, Joseph W H. Fundamentals of nonlinear optics [M]. Boca Raton: CRC press. 2017.

【2】Yao J Q. Nonlinear optical frequency conversion and laser tuning technology[M]. Beijing: Science Press, 1995.
姚建铨. 非线性光学频率变换及激光调谐技术[M]. 北京: 科学出版社, 1995.

【3】Zhong K, Mei J L, Liu Y, et al. Widely tunable eye-safe optical parametric oscillator with noncollinear phase-matching in a ring cavity [J]. Optics Express. 2019, 27(8): 10449-10455.Zhong K, Mei J L, Liu Y, et al. Widely tunable eye-safe optical parametric oscillator with noncollinear phase-matching in a ring cavity [J]. Optics Express. 2019, 27(8): 10449-10455.

【4】Yao J Q, Wang Y Y. Nonlinear optics and solid-state lasers: advanced concepts, tuning-fundamentals and applications [M]. Heidelberg: Springer. 2012.

【5】Zhong K, Shi W, Xu D G, et al. Optically pumped terahertz sources [J]. Science China Technological Sciences. 2017, 60(12): 1801-1818.

【6】Peyghambarian N, Koch S W. Semiconductor nonlinear materials [M]. ∥Gibbs H M, Khitrova G, Peyghambarian N. Nonlinear photonics. Springer series in electronics and photonics.Heidelberg: Springer. 1990, 30: 7-60.

【7】Baudrier-Raybaut M, Ha?dar R, Kupecek P, et al. Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials [J]. Nature. 2004, 432(7015): 374-376.

【8】Ru Q T, Lee N, Chen X, et al. Optical parametric oscillation in a random polycrystalline medium [J]. Optica. 2017, 4(6): 617-618.Ru Q T, Lee N, Chen X, et al. Optical parametric oscillation in a random polycrystalline medium [J]. Optica. 2017, 4(6): 617-618.

【9】Morozov E Y, Chirkin A S. Stochastic quasi-phase matching in nonlinear-optical crystals with an irregular domain structure [J]. Quantum Electronics. 2004, 34(3): 227-232.

【10】Ru Q T, Kawamori T, Lee N, et al. Optical parametric oscillation in a random poly-crystalline medium: ZnSe ceramic [J]. Proceedings of SPIE. 2018, 1051: 1051615.

【11】Peticolas W L, Goldsborough J P, Rieckhoff K. Double photon excitation in organic crystals [J]. Physical Review Letters. 1963, 10(2): 43-45.Peticolas W L, Goldsborough J P, Rieckhoff K. Double photon excitation in organic crystals [J]. Physical Review Letters. 1963, 10(2): 43-45.

【12】Kurtz S K, Perry T T. A powder technique for the evaluation of nonlinear optical materials [J]. Journal of Applied Physics. 1968, 39(8): 3798-3813.

【13】Jia J R, Xue X L, Zhang H. Research on optical properties of CsSbSO4F2 crystal [J]. Journal of Synthetic Crystals. 2019, 48(3): 394-397.
贾俊荣, 薛小铃, 张红. CsSbSO4F2晶体的光学特性研究 [J]. 人工晶体学报. 2019, 48(3): 394-397.

【14】Tehranchi A, Kashyap R. Engineered gratings for flat broadening of second-harmonic phase-matching bandwidth in MgO-doped lithium niobate waveguides [J]. Optics Express. 2008, 16(23): 18970-18975.

【15】Dang W R, Chen Y P, Chen X F. Performance enhancement for ultrashort-pulse wavelength conversion by using an aperiodic domain-inverted optical superlattice [J]. IEEE Photonics Technology Letters. 2012, 24(5): 347-349.

【16】Molina P. Ramírez M D L O, Bausá L. Strontium Barium niobate as a multifunctional two-dimensional nonlinear “photonic glass” [J]. Advanced Functional Materials. 2008, 18(5): 709-715.

【17】Kawai S, Ogawa T, Lee H, et al. Second-harmonic generation from needlelike ferroelectric domains in Sr0.6Ba0.4Nd2O6 single crystals [J]. Applied Physics Letters. 1998, 73(6): 768-770.

【18】Trull J, Cojocaru C, Fischer R, et al. Second-harmonic parametric scattering in ferroelectric crystals with disordered nonlinear domain structures [J]. Optics Express. 2007, 15(24): 15868-15877.

【19】Wang W J, Roppo V, Kalinowski K, et al. Third-harmonic generation via broadband cascading in disordered quadratic nonlinear media [J]. Optics Express. 2009, 17(22): 20117-20123.

【20】Roppo V, Wang W J, Kalinowski K, et al. The role of ferroelectric domain structure in second harmonic generation in random quadratic media [J]. Optics Express. 2010, 18(5): 4012-4022.

【21】Sheng Y, Ma D L, Krolikowski W. Randomized nonlinear photonic crystal for broadband optical frequency conversion [J]. Journal of Physics B. 2013, 46(21): 215401.

【22】Sheng Y, Chen X, Lukasiewicz T, et al. Calcium barium niobate as a functional material for broadband optical frequency conversion [J]. Optics Letters. 2014, 39(6): 1330-1332.

【23】Le Grand Y, Rouède D, Odin C, et al. Second-harmonic scattering by domains in RbH2PO4 ferroelectrics [J]. Optics Communications. 2001, 200(1/2/3/4/5/6): 249-260.

【24】Trabs P, Noack F, Aleksandrovsky A S, et al. Generation of coherent radiation in the vacuum ultraviolet using randomly quasi-phase-matched strontium tetraborate [J]. Optics Letters. 2016, 41(3): 618-621.

【25】Sorokin E, Sorokina I T. Femtosecond operation and random quasi-phase-matched self-doubling of ceramic Cr: ZnSe laser . [C]∥Conference on Lasers and Electro-Optics 2010, May 16-21, 2010, San Jose, California. Washington, D.C.: OSA. 2010, CTuGG2.

【26】?uminas R, Tamo?auskas G, Valiulis G, et al. Multi-octave spanning nonlinear interactions induced by femtosecond filamentation in polycrystalline ZnSe [J]. Applied Physics Letters. 2017, 110(24): 241106.

【27】Vasilyev S, Moskalev I, Mirov M, et al. Mid-IR Kerr-lens mode-locked polycrystalline Cr∶ZnS and Cr∶ZnSe lasers with intracavity frequency conversion via random quasi-phase-matching [J]. Proceedings of SPIE. 2016, 9731: 97310B.

【28】Vasilyev S, Moskalev I, Mirov M, et al. Ultrafast middle-IR lasers and amplifiers based on polycrystalline Cr∶ZnS and Cr∶ZnSe [J]. Optical Materials Express. 2017, 7(7): 2636-2650.

【29】Vasilyev S, Smolski V, Peppers J, et al. Middle-IR frequency comb based on Cr∶ZnS laser [J]. Optics Express. 2019, 27(24): 35079-35087.

【30】Vasilyev S, Moskalev I, Smolski V, et al. Octave-spanning Cr∶ZnS femtosecond laser with intrinsic nonlinear interferometry [J]. Optica. 2019, 6(2): 126-127.

【31】Vasilyev S, Moskalev I S, Smolski V O, et al. Super-octave longwave mid-infrared coherent transients produced by optical rectification of few-cycle 2.5-μm pulses [J]. Optica. 2019, 6(1): 111-114.Vasilyev S, Moskalev I S, Smolski V O, et al. Super-octave longwave mid-infrared coherent transients produced by optical rectification of few-cycle 2.5-μm pulses [J]. Optica. 2019, 6(1): 111-114.

【32】Vasilyev S, Moskalev I, Smolski V, et al. Multi-octave visible to long-wave IR femtosecond continuum generated in Cr∶ZnS-GaSe tandem [J]. Optics Express. 2019, 27(11): 16405-16413.

【33】Zhang J, Fritsch K, Wang Q, et al. Intra-pulse difference-frequency generation of mid-infrared (2.7--20 μm) by random quasi-phase-matching [J]. Optics Letters. 2019, 44(12): 2986-2989.

【34】Kupfer R, Quevedo H J, Smith H L, et al. Cascade random-quasi-phase-matched harmonic generation in polycrystalline ZnSe [J]. Journal of Applied Physics. 2018, 124(24): 243102.

【35】Ru Q T, Kawamori T, Vasilyev S, et al. Broadband randomly phase matched OPO using a thin 0.5-mm ZnSe ceramic and a dispersion-free cavity . [C]∥Conference on Lasers and Electro-Optics, May 5-10, 2019, San Jose, California. Washington, D.C.: OSA. 2019, STh3J: 6.

【36】Yu Morozov E, Kaminskii A, Chirkin A S, et al. Second optical harmonic generation in nonlinear crystals with a disordered domain structure [J]. Journal of Experimental and Theoretical Physics Letters. 2001, 73(12): 647-650.

【37】Vidal X, Martorell J. Generation of light in media with a random distribution of nonlinear domains [J]. Physical Review Letters. 2006, 97(1): 013902.Vidal X, Martorell J. Generation of light in media with a random distribution of nonlinear domains [J]. Physical Review Letters. 2006, 97(1): 013902.

【38】Kawamori T, Ru Q T, Vodopyanov K L. Comprehensive model for randomly phase-matched frequency conversion in zinc-blende polycrystals and experimental results for ZnSe [J]. Physical Review Applied. 2019, 11(5): 054015.

【39】Marsaglia G. Choosing a point from the surface of a sphere [J]. Annals of Mathematical Statistics. 1972, 43(2): 645-646.

【40】Muller M E. A note on a method for generating points uniformly on n-dimensional spheres [J]. Communications of the ACM. 1959, 2(4): 19-20.

【41】Xiong Z X. Fractal study of ceramic materials[M]. Beijing: Science Press, 2000, 44-56.
熊兆贤. 陶瓷材料的分形研究[M]. 北京: 科学出版社, 2000, 44-56.

【42】Chen X, Gaume R. Non-stoichiometric grain-growth in ZnSe ceramics for χ(2) interaction [J]. Optical Materials Express. 2019, 9(2): 400-409.

【43】Cao J B. Geometrical modeling and FEM analysis of electronic ceramics [D]. Tianjin: Tianjin University. 2006.
曹金波. 电子陶瓷材料的几何建模与有限元分析 [D]. 天津: 天津大学. 2006.

【44】Wang Y F. 3D modeling and numerical simulation analysis for polycrystalline metal under finite deformation Xi''''an : [D]. Xidian University. 2018.
王云飞. 有限变形下三维多晶金属建模及数值模拟分析 [D]. 西安: 西安电子科技大学. 2018.

【45】Gu C F. Research on ratcheting of rolling magnesium alloy and microstructure simulation [D]. Nanjing: Nanjing University of Science and Technology. 2012.
顾春飞. 轧制镁合金棘轮行为研究及微观组织数值模拟 [D]. 南京: 南京理工大学. 2012.

【46】Zhang F G. Numerical simulation of micro-upsetting process in polycrystalline plasticity model [D]. Shanghai: Shanghai JiaoTong University. 2011.
张丰果. 基于多晶体塑性模型的微镦粗过程数值模拟 [D]. 上海: 上海交通大学. 2011.

【47】Fang B. Simulation study on microstructure evolution of ceramic tool materials during fabrication [D]. Jinan: Shandong University. 2007.
方斌. 烧结过程中陶瓷刀具材料微观组织结构演变模拟研究 [D]. 济南: 山东大学. 2007.

【48】Zhou Y K, Sun L H, Li Y. Ceramic surface technology[M]. Beijing: National Defense Industry Press, 2007, 249-276.
周元康, 孙丽华, 李晔. 陶瓷表面技术[M]. 北京: 国防工业出版社, 2007, 249-276.

【49】Benedetti I, Barbe F. Modelling polycrystalline materials: an overview of three-dimensional grain-scale mechanical models [J]. Journal of Multiscale Modelling. 2013, 5(1): 1350002.

【50】Jiang Z, Zhao J, Xie H. Microforming technology: theory, simulation and practice[M]. New York: , 2017, 271-272.

引用该论文

Liu Kefei,Zhong Kai,Yao Jianquan. Research Progress on Random Quasi-Phase Matching in Polycrystalline Materials[J]. Laser & Optoelectronics Progress, 2020, 57(21): 210001

刘科飞,钟凯,姚建铨. 多晶材料随机准相位匹配研究进展[J]. 激光与光电子学进展, 2020, 57(21): 210001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF