Photonics Research, 2020, 8 (8): 08001342, Published Online: Jul. 23, 2020   

Frequency stabilization and tuning of breathing solitons in Si3N4 microresonators Download: 607次

Author Affiliations
1 CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
2 CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
3 Center for Micro and Nanoscale Research and Fabrication, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026, China
4 e-mail: clzou321@ustc.edu.cn
Abstract
Dissipative Kerr solitons offer broadband coherent and low-noise frequency combs and stable temporal pulse trains, having shown great potential applications in spectroscopy, communications, and metrology. Breathing solitons are a particular kind of dissipative Kerr soliton in which the pulse duration and peak intensity show periodic oscillation. Here we have investigated the breathing dissipative Kerr solitons in silicon nitride (Si3N4) microrings, while the breathing period shows uncertainties of around megahertz (MHz) order in both simulation and experiments. This instability is the main obstacle for future applications. By applying a modulated signal to the pump laser, the breathing frequency can be injection locked to the modulation frequency and tuned over tens of MHz with frequency noise significantly suppressed. Our demonstration offers an alternative knob for the control of soliton dynamics in microresonators and paves a new avenue towards practical applications of breathing solitons.

Shuai Wan, Rui Niu, Zheng-Yu Wang, Jin-Lan Peng, Ming Li, Jin Li, Guang-Can Guo, Chang-Ling Zou, Chun-Hua Dong. Frequency stabilization and tuning of breathing solitons in Si3N4 microresonators[J]. Photonics Research, 2020, 8(8): 08001342.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!