首页 > 论文 > 光学学报 > 39卷 > 10期(pp:1023001--1)

大功率LED透镜热学特性分析

Thermal Analysis of High-Power LED Lens

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

随着节能减排环保理念的普及,LED因其高效节能、寿命长等特点在室内外照明、道路照明指示灯等领域展现出巨大潜力[1-2]。尽管LED灯具的广泛使用会降低大量的能耗,但在其工作过程中仍有约80%的输入功率将转化为热量并累积在LED器件中,如果热量不能及时有效地散出,将导致结温升高、光效降低和热应力集中等现象,进而造成器件变形,可靠性以及寿命下降等问题[3-5]。因此,对大功率LED进行热管理尤为重要。

Abstract

A downward-illuminated 100 W LED was studied herein, and its temperature and thermal stress distributions were calculated under three conditions: pure thermal conduction, thermal radiation and thermal conduction coupling, and convection, thermal radiation, and thermal conduction coupling. The following factors were evaluated: temperatures of the characteristic points on the lens’ external surface; the effects of air convection in the closed cavity of lens and surface radiation on the lens’ temperature distribution; the effect of surface emissivity on the central temperature of the lens; the effect of the thermal expansion coefficient on the maximum thermal stress. Results show that thermal convection produces a negligible rise in temperature (less than 1%), whereas surface radiation results in a 13.3% temperature rise at the lens’ center. The temperature of the lens’ center varies approximately linearly with the light source’s emissivity and the lens surface area, whereas the maximum thermal stress varies linearly with the thermal expansion coefficient. The maximum thermal stress is concentrated at the lens’ corners, whereas the maximum total deformation displacement is concentrated at its center. Therefore, when designing high-power LED lenses, a low-emissivity coating should be considered to reduce the lens’ temperature while still satisfying the optical requirements. To reduce thermal stress and deformation, a material with a small thermal expansion coefficient should be used and the lens’ corners should be avoided.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/AOS201939.1023001

所属栏目:光学器件

基金项目:国家重点研发计划;

收稿日期:2019-04-22

修改稿日期:2019-06-24

网络出版日期:2019-10-01

作者单位    点击查看

许丹丹:中国科学院工程热物理研究所传热传质研究中心, 北京 100190
胡学功:中国科学院工程热物理研究所传热传质研究中心, 北京 100190中国科学院大学, 北京 100049

联系人作者:胡学功(xuegonghu@iet.com)

备注:国家重点研发计划;

【1】Luo X B, Hu R, Liu S et al. Heat and fluid flow in high-power LED packaging and applications. Progress in Energy and Combustion Science. 56, 1-32(2016).

【2】Weng C J. Advanced thermal enhancement and management of LED packages. International Communications in Heat and Mass Transfer. 36(3), 245-248(2009).

【3】Li H, Liang J Q, Liang Z Z et al. Thermal analysis of AlGaInP-based LED microarray. Acta Optica Sinica. 36(1), (2016).
李贺, 梁静秋, 梁中翥 等. AlGaInP材料LED微阵列热学特性分析. 光学学报. 36(1), (2016).

【4】Chen H T, Tan S C and Hui S Y. Color variation reduction of GaN-based white light-emitting diodes via peak-wavelength stabilization. IEEE Transactions on Power Electronics. 29(7), 3709-3719(2014).

【5】Chen H, Zhou X L, Tang W et al. Thermal design of high power remote phosphor white LED package. Chinese Journal of Luminescence. 38(1), 97-102(2017).
陈华, 周兴林, 汤文 等. 大功率远程荧光粉型白光 LED 散热封装设计. 发光学报. 38(1), 97-102(2017).

【6】Zou S P, Wu B X, Wan Z P et al. Effect of current-temperature stress on the reliability of GaN LED. Chinese Journal of Luminescence. 37(1), 124-129(2016).
邹水平, 吴柏禧, 万珍平 等. 电-热应力对GaN基白光LED可靠性的影响. 发光学报. 37(1), 124-129(2016).

【7】Li J S, Yang Q X, Niu P J et al. Analysis of thermal field on integrated LED light source based on COMSOL multi-physics finite element simulation. Physics Procedia. 22, 150-156(2011).

【8】Liou B H, Chen C M, Horng R H et al. Improvement of thermal management of high-power GaN-based light-emitting diodes. Microelectronics Reliability. 52(5), 861-865(2012).

【9】Juntunen E, Tapaninen O, Sitomaniemi A et al. Effect of phosphor encapsulant on the thermal resistance of a high-power COB LED module. IEEE Transactions on Components, Packaging and Manufacturing Technology. 3(7), 1148-1154(2013).

【10】Maaspuro M and Tuominen A. Thermal analysis of LED spot lighting device operating in external natural or forced heat convection. Microelectronics Reliability. 53(3), 428-434(2013).

【11】Fei X, Qian K Y and Luo Y. Junction temperature measurement and luminous properties research of high-power LED. Journal of Optoelectronics·laser. 19(3), 289-292, 299(2008).
费翔, 钱可元, 罗毅. 大功率LED结温测量及发光特性研究. 光电子·激光. 19(3), 289-292, 299(2008).

【12】Liu Y B, Huang X M and Liu G H. Research of heat release technology of based on power-LED. China Illuminating Engineering Journal. 19(1), 69-73(2008).
刘一兵, 黄新民, 刘国华. 基于功率型LED散热技术的研究. 照明工程学报. 19(1), 69-73(2008).

【13】Zhu X P, Yu G Y, Ding S S et al. Transient temperature field and thermal stress of high power LED. Opto-Electronic Engineering. 38(2), 132-137(2011).
朱旭平, 余桂英, 丁纾姝 等. 功率型LED瞬态温度场及热应力分布的研究. 光电工程. 38(2), 132-137(2011).

【14】Chen H T, Chen F C, He Y et al. Analysis of thermal characteristics of a multichip light-emitting diodes device. Chinese Journal of Luminescence. 39(5), 751-756(2018).
陈焕庭, 陈福昌, 何洋 等. 多芯片LED器件热学特性分析. 发光学报. 39(5), 751-756(2018).

【15】Chen Q, Ma Y P, Yu X J et al. Phosphor temperature overestimation in high-power light-emitting diode by thermocouple. IEEE Transactions on Electron Devices. 64(2), 463-466(2017).

引用该论文

Dandan Xu,Xuegong Hu. Thermal Analysis of High-Power LED Lens[J]. Acta Optica Sinica, 2019, 39(10): 1023001

许丹丹,胡学功. 大功率LED透镜热学特性分析[J]. 光学学报, 2019, 39(10): 1023001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF