结构光照明显微中的超分辨图像重建研究

周兴 但旦 千佳 姚保利 雷铭

中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室

[摘要]近年来, 随着各种新型荧光探针的出现和成像方法的改进, 远场光学成像的分辨率已经突破了衍射极限的限制。基于结构光照明的荧光显微技术凭借成像速度快、光毒性弱等优点, 已成为目前主流的超分辨成像技术之一。实现结构光照明超分辨显微成像的关键在于照明光场的精准调控和后期的超分辨图像重建算法, 否则将会在重建的超分辨图像中产生不可预估的伪影, 混淆对观测结构真实形态的判断。详细对比了几种典型的结构光照明显微超分辨重建算法, 证明基于图像重组变换的结构光照明超分辨图像重建算法可以有效解决极低结构光场调制度下的超分辨图像重建问题, 降低结构光照明显微中的激发光功率。

结构导向的可逆光激活绿色荧光蛋白探针的研制

王盛 陈轩泽 常蕾 薛瑞莹 孙育杰

北京大学生物膜与膜生物工程国家重点实验室;北京大学生物动态光学成像中心;北京大学生命科学学院

[摘要]近几年, 可逆光激活荧光蛋白的研制越来越受到人们的重视, 这类荧光蛋白极大地促进了活细胞超高分辨显微成像技术的发展及应用。可逆光激活荧光蛋白可被不同波长的光多次可逆地进行调制, 因而被广泛地应用于高密度数据的光存储、光致变色荧光共振能量转移的测量以及基于可逆饱和线性荧光跃迁原理的超高分辨率显微成像中。从研制这类荧光蛋白所涉及的关键氨基酸位点出发, 本文综述了近几年可逆光激活绿色荧光蛋白的研制进展, 并简要地讨论荧光蛋白结构与光学特性的关系, 从而为后续结构导向的可逆光激活荧光蛋白的研制提供参考。

基于激光干涉的结构光照明超分辨荧光显微镜系统

文刚 李思黾 杨西斌 王林波 梁永 金鑫 朱茜 李辉

中国科学院苏州生物医学工程技术研究所, 江苏省医用光学重点实验室

[摘要]结构光照明荧光显微术(SIM)是一种可突破阿贝衍射极限的宽场显微成像技术, 因其非侵入、成像速度快及光损伤小等优点在生物医学研究中具有广泛的应用前景。从结构光照明显微成像系统基本原理出发, 分析了超分辨图像重构算法原理、重构图像中伪影来源及优化方法; 结合研制的线性/非线性结构光照明显微镜, 详细讨论了基于激光干涉的SIM成像系统光机结构。重点讨论了系统的同步时序设计和光路中的几个关键技术问题。设计对比实验验证了自主开发的SIM重构算法的可靠性, 并基于研制的线性SIM系统开展细胞骨架的成像实验。最后, 对SIM技术在生物上的发展和应用提出展望。 ps。

超分辨定位成像中的像差表征和校正

赵泽宇 张肇宁 黄振立

华中科技大学武汉光电国家实验室Britton Chance生物医学光子学研究中心;华中科技大学生物医学工程系生物医学光子学教育部重点实验室

[摘要]超分辨定位成像技术凭借对数千甚至数万张采集的原始图像进行单分子定位及重建, 可以获得几十纳米的超高分辨率, 观察到之前看不到的细胞结构以及生物现象。然而, 在实际的成像过程中, 采集到的图像会受到像差(来源于光学系统的不完美或样品本身的不均匀性)的影响而导致分辨率下降, 甚至会造成错误结果。为此, 定量表征了几种典型像差对超分辨定位成像的影响, 并提出了一种基于样品图像本身的像差校正方法。仿真和实验结果表明, 像差会造成系统点扩展函数的变形以及成像分辨率的下降, 使用基于图像本身的像差校正方法可以恢复图像的成像质量。

随机光学重构显微成像技术及其应用

杨洁 田翠萍 钟桂生

上海科技大学ihuman研究所

[摘要]光学显微成像技术在生命科学、生物医学、临床医学诊断和材料科学等领域有着非常广泛的应用。但由于光学衍射极限的存在, 传统光学显微镜无法观察到纳米尺度的物质及生命活动, 极大地限制科学研究和医学的发展。近年来, 随着突破光学衍射极限的超分辨成像技术的不断发展, 显微成像分辨率得到不同程度的提高。目前在基于不同原理的各种超高分辨率显微镜中, 随机光学重构显微镜 (STORM) 分辨率最高, 可达几十纳米, 真正实现了单分子水平检测。着重介绍了STORM超分辨显微成像技术的原理、实验方法及其应用。

自外而内的单幅图像超分辨率复原算法

郑向涛 袁媛 卢孝强

中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室光学影像分析与学习中心;中国科学院大学

[摘要]单幅图像超分辨率(SR)复原是一个病态逆问题, 需要利用图像的先验知识进行正则化约束。提出了一种同时考虑外在样例和内在自相似性的单幅图像SR复原算法, 其中外在先验知识是通过卷积神经网络从外在低分辨率-高分辨率图像对学习得到的, 而内在先验约束由聚类和低秩近似实现。实验结果表明, 本方法在复原效果和稳健性方面优于已有方法。

光片荧光显微成像

杨豫龙 宗伟建 吴润龙 陈良怡

北京大学分子医学研究所膜生物学国家重点实验室

[摘要]在过去的20年, 激光扫描共聚焦显微镜一直是在细胞水平和亚细胞水平上观察生命活动的标准工具, 但是基于针孔的共聚焦显微镜的光学层切是以牺牲焦平面以外的被激发的荧光色团和较大的光毒性为代价的。作为一种新型的荧光显微镜, 光片荧光显微镜采用侧向照明的方式, 对样品直接进行面成像。相对于点扫描的成像方式, 光片显微镜成像速度远远高于激光扫描共聚焦显微镜, 使得研究一些高速的精细生命活动过程成为了可能。光片荧光显微镜的另外一个优点是只有光片处的样品才会被激发, 处于光片以外的样品则不会被激发, 因此光毒性较小, 使得人们能够在更长的时间尺度下观察样品。正是由于光片荧光显微镜特殊的照明和成像方式, 才使其在大样本的三维高速成像中起到不可替代的作用。本文简要回顾了光片荧光显微镜发展的历史及研究现状, 旨在为该领域的科研人员对光片荧光显微镜的现状及未来发展方向提供个人理解。

荧光蛋白与超分辨显微成像

彭鼎铭 付志飞 徐平勇

中国科学院核酸生物学重点实验室;中国科学院大学生命科学学院

[摘要]超分辨显微成像技术使细胞生物学进入到了一个全新的时代, 但如何进一步提高超分辨显微成像技术的时空分辨率仍是光学领域需要解决的重要问题。目前为止几乎所有的超分辨显微成像技术都依赖于荧光探针, 光调控荧光蛋白作为一类特殊的荧光探针, 可以被不同波长的激发光所激活, 产生随机或者特殊结构样式的信号。利用这些信息, 透镜系统的空间分辨率得到了提高。通过总结光调控荧光蛋白的各类参数, 从荧光探针入手, 寻找进一步提高成像系统空间分辨率的方法与策略, 为选取适当的荧光探针提供建议, 并且阐述了荧光蛋白与超分辨显微成像技术之间的关系。

返回顶部