特邀论文

计算光场成像

方璐,戴琼海

清华大学脑与认知科学研究院

[摘要]光场为三维世界中光线集合的完备表示。通过记录更高维度的光线数据,光场能够准确感知周围复杂多变的动态环境,支撑智能系统对环境的理解与决策。计算光场成像技术围绕光场及全光函数表示,旨在结合计算、数字传感器、光学系统和智能光照等技术,以及硬件设计、软件计算能力,突破经典成像模型和数字相机的局限性,建立光在空域、视角、光谱和时域等多个维度的关系,实现耦合感知、解耦重建与智能处理,具备面向大范围动态场景的多维多尺度成像能力。光场成像技术正逐渐被应用于生命科学、工业探测、国家安全、无人系统和虚拟现实/增强现实等领域,具有重要的学术研究价值和广阔的产业应用前景。然而,伴随着高维数据的离散化采样,光场成像面临空间分辨率与视角分辨率的维度权衡挑战,如何对稀疏化的采样数据进行光场重建成为计算光场成像及其应用的基础难题。与此同时,受制于光场信号的高维数据感知量,光场处理面临有效数据感知与计算高效性的矛盾。如何用光场这一高维信息采集手段,取代传统二维成像视觉感知方法,并结合智能信息处理技术实现智能化高效感知,是实现光场成像技术产业化应用的巨大挑战。对过去20年来计算光场成像装置与算法的研究进行概述和讨论,内容涵盖光场表示和理论、光场信号采集、空间与视角维度重建等。

深度学习在计算成像中的应用

王飞,王昊,卞耀明,司徒国海

中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 中国科学院大学材料与光电研究中心

[摘要]近年来,深度学习被广泛应用于计算成像中,并取得了令人瞩目的成果,已成为该领域的研究热点。为了深入了解现有基于深度学习的方法是如何解决众多计算成像问题的,主要介绍了该方法的基本理论和实施步骤,然后以散射成像、数字全息及计算鬼成像中的应用为例具体介绍该方法的有效性和优越性。汇总对比了一些典型应用,并对基于深度学习的计算成像方法进行了总结和展望。

深度学习下的计算成像:现状、挑战与未来

左超,冯世杰,张翔宇,韩静,陈钱

南京理工大学电子工程与光电技术学院,智能计算成像实验室(SCILab), 南京理工大学江苏省光谱成像与智能感知重点实验室

[摘要]近年来,光学成像技术已经由传统的强度、彩色成像发展进入计算光学成像时代。计算光学成像基于几何光学、波动光学等理论对场景目标经光学系统成像再到探测器采样这一完整图像生成过程建立精确的正向数学模型,再求解该正向成像模型所对应的“逆问题”,以计算重构的方式来获得场景目标的高质量图像或者传统技术无法直接获得的相位、光谱、偏振、光场、相干度、折射率、三维形貌等高维度物理信息。然而,计算成像系统的实际成像性能也同样极大程度地受限于“正向数学模型的准确性”以及“逆向重构算法的可靠性”,实际成像物理过程的不可预见性与高维病态逆问题求解的复杂性已成为这一领域进一步发展的瓶颈问题。近年来,人工智能与深度学习技术的飞跃式发展为计算光学成像技术开启了一扇全新的大门。不同于传统计算成像方法所依赖的物理驱动,深度学习下的计算成像是一类由数据驱动的方法,它不但解决了许多过去计算成像领域难以解决的难题,还在信息获取能力、成像的功能、核心性能指标(如成像空间分辨率、时间分辨率、灵敏度等)上都获得了显著提升。基于此,首先概括性介绍深度学习技术在计算光学成像领域的研究进展与最新成果,然后分析了当前深度学习技术在计算光学成像领域面临的主要问题与挑战,最后展望了该领域未来的发展方向与可能的研究方向。

散斑相关成像:从点扩展函数到光场全要素

谢向生,刘忆琨,梁浩文,周建英

中山大学物理学院, 汕头大学理学院物理系

[摘要]散射光学成像恢复是光学成像领域最重要的研究课题之一。科学家已经提出各种技术实现不同散射环境下的成像恢复。其中,散斑相关性的解卷积技术具有成像质量高、恢复速度快和易于集成等优点。简要综述了散斑相关成像的进展,从光学记忆效应和解卷积原理出发,介绍点扩展函数新物理特性及其在成像恢复中的应用,总结点扩展函数的间接获取方法,最后提出光场全要素(plenoptics)的概念。光场的全要素探索有望在更复杂散射环境中提供更全面的信息,使散射光学成像技术在生物、医疗、海洋、军事和日常生活等场景中更具应用前景。

散射成像技术的研究进展

朱磊,邵晓鹏

西安电子科技大学物理与光电工程学院

[摘要]散射在光的成像过程中无法避免,传统的光学成像技术很难解决散射引起的光波前畸变及图像失真等问题。近年来,大量的研究成果表明充分利用散射效应的成像技术可以实现透过散射介质或复杂介质成像,且具有超分辨的特性。本文在介绍散射成像基本原理的基础上,重点介绍了透过散射介质成像方法以及相关技术的研究进展,分析了散射成像尚存在的问题,最后对散射成像未来的研究方向进行了展望。

压缩感知在光学成像领域的应用

柯钧,张临夏,周群

北京理工大学光电学院

[摘要]早期压缩感知在光学成像领域的应用主要集中在空域压缩成像。近年来,更多的空域压缩成像采用阵列式探测器取代单元探测器采集测量值。同时,压缩成像的研究也从二维空间拓展到三维测距、高速成像、多光谱成像、关联成像和全息成像等方向。本文针对空域高分辨率压缩成像、压缩感知测距和时域高速压缩成像进行详细分析,结合空域压缩成像总结了测量矩阵设计的研究进展,讨论研究中遇到的困难以及未来可能发展的机遇,并对压缩感知在多光谱、关联成像、和全息成像中的应用研究进行了讨论。此外,本文也总结了近几年深度学习技术在各应用方向上对系统目标恢复性能的改善。

鬼成像中一些数学问题

王健,童智申,胡晨昱,徐萌初,黄增峰

复旦大学大数据学院

[摘要]鬼成像是一种与传统成像方式不同的通过光场涨落的高阶关联获得图像信息的新型成像方式。近年来,相比传统成像方式,鬼成像所拥有的一些优点如高灵敏度、超分辨能力、抗散射等,使其在遥感、多光谱成像、热X射线衍射成像等领域得到广泛研究。随着对鬼成像的广泛研究,数学理论和方法在其中发挥的作用愈显突出。例如,基于压缩感知理论,可以进行鬼成像系统采样方式优化、图像重构算法设计及图像重构质量分析等研究工作。本文旨在探索鬼成像中的一些有趣的数学问题,主要包括:系统预处理方法、光场优化及相位恢复问题。对这些问题的研究既可以丰富鬼成像理论,又能推动它在实际应用中的发展。

基于数字全息术的近场成像与应用

戴思清,豆嘉真,张继巍,邸江磊,赵建林

西北工业大学物理科学与技术学院, 陕西省光信息技术重点实验室, 超常条件材料物理与化学教育部重点实验室

[摘要]近场是指局域在物体表面附近亚波长范围内的空间区域。倏逝波存在于近场区域,可利用其与物质的相互作用特性对位于近场区域的某些介质样品进行高分辨率成像,及对样品物性变化进行高灵敏度测量,其中,基于全内反射和表面等离子体共振的近场成像与测量方法已在许多领域获得广泛应用。将数字全息术与这类近场测量方法相结合,可进一步有效解决自近场区域反射光波的相位分布的高精度全场动态测量问题。重点介绍基于全内反射数字全息术和表面等离子体共振全息显微术的近场成像方法与测量应用研究进展。

光学扫描全息术研究进展

任振波,林彥民

西北工业大学物理科学与技术学院,超常条件材料物理与化学教育部重点实验室,陕西省光信息技术重点实验室

[摘要]光学成像技术极大地拓展了人类的视觉极限,提高了人们观察和理解现实世界的能力。越多地获得目标的光学信息,对其的认识越充分。数字全息术是一种可以将样本的三维信息以二维全息图的形式编码记录下来的一种成像技术。通过获得由携带物体信息的物光波和参考光波叠加产生的干涉图案,可以以数字化的方式实现多种重建模态,例如图像恢复、相位成像和切片成像等。光学扫描全息术是一种独特的数字全息成像技术,通过主动式二维化扫描对三维物体进行成像,其完整的波前信息可以被单像素探测器记录,并基于光外差检测进行信号解调,从而恢复出复数全息图。对光学扫描全息术的最新进展进行介绍。首先,基于双光瞳成像系统,通过特殊的硬件和算法设计,提高光学成像系统的性能,如提高空间分辨率、缩短扫描时间。其次,基于计算成像原理,通过改进和优化全息像重建算法,实现高质量的图像恢复,主要涉及切片成像和三维成像等重建模态。第三,介绍光学扫描全息术的其他研究方向,并讨论该领域未来可能的发展方向。

Ptychography相位成像及其关键技术进展

潘兴臣,刘诚,陶华,刘海岗,朱健强

中国科学院上海光学精密机械研究所, 中国科学院高功率激光物理重点实验室, 中国科学院中国工程物理研究院高功率激光物理联合实验室

[摘要]Ptychography是近些年快速发展起来的一种新型相位恢复技术,通过对待测样品以小于照明光直径的步长扫描后,利用迭代计算可以重建出照明光和样品复振幅分布,是一种理论分辨率为衍射极限的非透镜相位成像技术。虽然其提出初期受限于基本假定条件,但近些年随着相关研究的跟进,人们对Ptychography算法特性的理解逐渐深入,算法也日趋成熟,在可见光、X射线和电子束等领域已被广泛应用于相位成像、波前诊断和光学计量,因此针对影响重建过程和精度的关键因素,如模态多样化、扫描误差、光斑误差、距离误差、样品厚度不可忽略等进行了总结,并讨论了针对上述问题的关键技术进展。

线阵相机标定方法综述

王国珲,钱克矛

西安工业大学光电工程学院, 新加坡南洋理工大学计算机科学与工程学院

[摘要]在基于相机的众多应用场合中,对相机内外参数与镜头畸变参数的标定是关键环节,确定其标定过程的简易操作及标定结果的精度至关重要。与面阵相机相比,线阵相机的标定过程较为复杂。介绍了适合线阵相机的成像几何模型和镜头畸变模型,总结了线阵相机标定的一般流程,归纳分析了文献中基于静态成像和动态扫描成像的标定方法,并对其特点作出了简要评价。

编码摄像

季向阳

清华大学自动化系

[摘要]编码摄像通过对光照、光路、传感等进行调制获取编码耦合的场景信息,并利用解码计算与图像信号处理,实现高精度场景重建,从而突破传统光学成像模型和物理器件的局限,有效提升成像系统的信息传递效率。随着光源、光学元件、传感器等成像要素的不断革新以及新型成像方法的出现,编码摄像技术取得了快速的发展,应用前景广阔。本文对编码摄像技术的进展进行了综述,重点围绕光照编码、光路编码和传感编码三个方面进行介绍。

返回顶部