Chinese Optics Letters
Search

2019, 17(7) Column

MORE

Chinese Optics Letters 第17卷 第7期

Author Affiliations
Abstract
1 Institute of Optics, Department of Physics, Zhejiang University, Hangzhou 310027, China
2 Center for Optics and Optoelectronics Research, College of Science, Zhejiang University of Technology, Hangzhou 310014, China
For most atom interferometers, the vibration isolation unit is applied to reduce vibration noise. In our experiment, instead of isolation, the vibration signals are monitored, and combining with the sensitive function, the compensation phase shift for the atom interferometer is obtained. We focus on the correction over a wide spectrum rather than on “monochromatic” frequencies. The sensitivity of the atom gravimeter can be upgraded by a factor of more than two. Furthermore, we demonstrate that the atom interferometer can still produce a good measurement result without passive vibration isolation in extremely noisy environments by using vibration compensation.
020.3320 Laser cooling 000.2780 Gravity 270.5570 Quantum detectors 
Chinese Optics Letters
2019, 17(7): 070201
Author Affiliations
Abstract
1 School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China
2 Engineering Research Center of Optical Instrument and System, Ministry of Education, Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
In this Letter, we propose a simple and effective approach for transforming a conventional Talbot array illuminator (TAI) with multilevel phase steps into a binary-phase TAI (BP-TAI) through detour phase encoding. The BP-TAI is a binary (0 π) phase-only diffractive optical element, which can be utilized to generate a large-scale focal spots array with a high compression ratio. As an example, we design a square BP-TAI with the fraction parameter β = 15 for achieving a square multifocal lattice with a high compression ratio β2. Theoretical analysis and experimental results demonstrate that the detour phase encoding is efficient for designing the BP-TAI, especially with the high compression ratio. Such results may be exploited in practical large-scale optical trapping and X-ray imaging.
050.1950 Diffraction gratings 070.6760 Talbot and self-imaging effects 050.1380 Binary optics 
Chinese Optics Letters
2019, 17(7): 070501
Author Affiliations
Abstract
1 Institute of Lightwave Technology, Beijing Jiaotong University, Beijing 100044, China
2 Key Laboratory of All Optical Network and Advanced Telecommunication Network of Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
A refractive index intensity detecting sensor with long-period grating written in the single-mode–thin-core–single-mode fiber (STS) structure is proposed and optimized theoretically. The sensor is composed of two single-mode fibers connected by a section of long-period fiber grating fabricated on thin-core fiber. After optimization and benefitting from the phase matching point, the loss peak of the structure can reach 62.8 dB theoretically. The wavelength of the characteristic peak is fixed at the phase matching point, so intensity detection can be achieved. The sensitivity can reach 272.5 dB/RIU. The structural optimization in this Letter provides a reference for the fabrication of an easy-made all-fiber sensor without extra cladding.
060.2370 Fiber optics sensors 060.2300 Fiber measurements 
Chinese Optics Letters
2019, 17(7): 070601
Jian Li 1,2Yang Xu 1,2Mingjiang Zhang 1,2,*Jianzhong Zhang 1,2[ ... ]Tao Wang 1,2
Author Affiliations
Abstract
1 Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan 030024, China
2 College of Physics & Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
We propose and experimentally demonstrate a novel Raman-based distributed fiber-optics temperature sensor (RDTS) for improving the temperature measurement accuracy and engineering applicability. The proposed method is based on double-ended demodulation with a reference temperature and dynamic dispersion difference compensation method, which can suppress the effect of local external physics perturbation and intermodal dispersion on temperature demodulation results. Moreover, the system can omit the pre-calibration process by using the reference temperature before the temperature measurement. The experimental results of dispersion compensation indicate that the temperature accuracy optimizes from 5.6°C to 1.2°C, and the temperature uncertainty decreases from 16.8°C to 2.4°C. Moreover, the double-ended configuration can automatically compensate the local external physics perturbation of the sensing fiber, which exhibits a distinctive improvement.
060.2370 Fiber optics sensors 120.5820 Scattering measurements 280.4788 Optical sensing and sensors 290.5860 Scattering, Raman 
Chinese Optics Letters
2019, 17(7): 070602
Min Zhang 1Bo Xu 1,*Xiaoyun Li 2Yi Cai 1[ ... ]Kun Qiu 1
Author Affiliations
Abstract
1 Key Laboratory of Optical Fiber Sensing and Communications, Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China
2 Business School, University of International Business and Economics, Beijing 100029, China
A novel predictive dynamic bandwidth allocation (DBA) method based on the long short-term memory (LSTM) neural network is proposed for a 10-gigabit-capable passive optical network in mobile front-haul (MFH) links. By predicting the number of packets that arrive at the optical network unit buffer based on LSTM, the round-trip time delay in traditional DBAs can be eliminated to meet the strict latency requirement for MFH links. Our study shows that the LSTM neural network has better performance than feed-forward neural networks. Based on extensive simulations, the proposed scheme is found to be able to achieve the latency requirement for MFH and outperforms the traditional DBAs in terms of delay, jitter, and packet loss ratio.
060.4250 Networks 060.4510 Optical communications 
Chinese Optics Letters
2019, 17(7): 070603
Author Affiliations
Abstract
Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
All-optical ultrasound probes that contain a photoacoustically-based ultrasound generator paired with a photonic acoustic sensor provide a promising imaging modality for diagnostic and MRI-compatible applications. Here, we demonstrate the fabrication of a fiber-based all-optical ultrasound probe and its applications in pulse-echo ultrasound imaging. The ultrasound generator is fabricated on a 125 μm multimode optical fiber by forming a light-absorbing multiwalled carbon nanotube (MWCNT)-polydimethylsiloxane (PDMS) composite coating on its distal end. A peak-to-peak acoustic pressure of 0.95 MPa was achieved with laser irradiation at 2.46 μJ by chemically functionalizing the fiber surface to enable a strong adsorption. Ultrasound reception was performed by a fiber-laser ultrasound sensor that translates ultrasound pressure into differential lasing-frequency changes. By linearly scanning the probe, ex vivo two- and three-dimensional imaging of a segment of swine trachea was demonstrated by detecting the echo ultrasound signals and reconstructing the acoustic scatterers. The probe presents axial and lateral resolutions at 150 and 62 μm, respectively. The small-sized, side-looking all-fiber ultrasound probe presents a promising approach for assembling an interventional endoscopy.
060.2370 Fiber optics sensors 110.5125 Photoacoustics 110.7170 Ultrasound 
Chinese Optics Letters
2019, 17(7): 070604
Author Affiliations
Abstract
1 Key Laboratory of High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
A method is proposed to optimize the recording structure of the photorefractive volume grating to compensate high spatial frequency in the distorted wavefront by optical phase conjugation. Based on the coupled-wave equation, the diffraction efficiency of the recorded grating formed by the scattered beams in different recording structures is simulated. The theoretical results show that the recorded modulations with high spatial frequency can be significantly improved in the small recording angle. In the experiment, three recording structures with the recording angles of 7.5°, 30°, and 45° are chosen to verify the compensation effect. Compared with the reconstructed image in the large recording angle of 45°, the signal to noise ratio of the image recorded at 7.5° increases to 3.2 times of that at 45°.
090.7330 Volume gratings 110.0113 Imaging through turbid media 070.5040 Phase conjugation 
Chinese Optics Letters
2019, 17(7): 070901
Author Affiliations
Abstract
1 Institute of Signal Processing and Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
2 College of Information Engineering, Fuyang Normal University, Fuyang 236037, China
In this Letter, we propose an advanced framework of ghost edge imaging, named compressed ghost edge imaging (CGEI). In the scheme, a set of structured speckle patterns with pixel shifting illuminate on an unknown object. The output is collected by a bucket detector without any spatial resolution. By using a compressed sensing algorithm, we obtain horizontal and vertical edge information of the unknown object with the bucket detector detection results and the known structured speckle patterns. The edge is finally constructed via two-dimensional edge information. The experimental and numerical simulations results show that the proposed scheme has a higher quality and reduces the number of measurements, in comparison with the existing edge detection schemes based on ghost imaging.
110.1650 Coherence imaging 110.1758 Computational imaging 
Chinese Optics Letters
2019, 17(7): 071101
Meng Wang 1,2Fan Wang 1,2Suya Feng 1,*Chunlei Yu 1,**[ ... ]Lili Hu 1,***
Author Affiliations
Abstract
1 Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
A large-mode-area (LMA) ytterbium-doped photonic crystal fiber (PCF) with core NA of 0.034 and core diameter of 50 μm was made by the stack-and-draw technique. The core is formed by Yb3+/Al3+/F /P5+ co-doped silica glass containing 0.09 mol% Yb2O3 with an absorption coefficient at 976 nm up to 3.2 dB/m. The core glass with homogeneous distribution of Yb3+ ions and refractive index difference of 4 × 10 4 compared with pure silica was prepared by the sol-gel method and heat homogenization at 2000°C. Laser power amplification of this LMA PCF was studied using a seed source of 21 ps pulse duration and 48.7 MHz repetition rate at 1030 nm wavelength. With pump power of 520 W, a maximum 272 W (266 kW peak power) quasi-single-mode laser output with M2 of 2.2 was achieved in a 4.7 m fiber length bent at a diameter of 47 cm with slope efficiency of 52%, and no obvious mode instability, stimulated Raman scattering, or thermal damage on the end facet of the fiber were observed.
140.3538 Lasers, pulsed 140.3615 Lasers, ytterbium 140.3510 Lasers, fiber 160.5690 Rare-earth-doped materials 
Chinese Optics Letters
2019, 17(7): 071401
Author Affiliations
Abstract
1 State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
2 Key Laboratory of High Power Laser Materials, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
3 College of Physics and State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
Praseodymium-ion-doped gain materials have the superiority of lasing at various visible wavelengths directly. Simple and compact visible lasers are booming with the development of blue laser diodes in recent years. In this Letter, we demonstrate the watt-level red laser with a single blue laser diode and Pr:YLiF4 crystal. On this basis, the passively Q-switched pulse lasers are obtained with monolayer graphene and Co:ZnO thin film as the Q-switchers in the visible range.
140.3480 Lasers, diode-pumped 140.3540 Lasers, Q-switched 140.7300 Visible lasers 
Chinese Optics Letters
2019, 17(7): 071402
Author Affiliations
Abstract
1 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
2 National Innovation Institute of Defense Technology, Academy of Military Sciences PLA China, Beijing 100071, China
3 State Key Laboratory of High Performance Computing, College of Computer, National University of Defense Technology, Changsha 410073, China
In this work, a soliton mode-locked erbium-doped fiber laser (EDFL) with a high-quality molecular beam epitaxy (MBE)-grown topological insulator (TI) Bi2Se3 saturable absorber (SA) is reported. To fabricate the SA device, a 16-layer Bi2Se3 film was grown successfully on a 100 μm thick SiO2 substrate and sandwiched directly between two fiber ferrules. The TI-SA had a saturable absorption of 1.12% and a saturable influence of 160 MW/cm2. After inserting the TI-SA into the unidirectional ring-cavity EDFL, self-starting mode-locked soliton pulse trains were obtained at a fundamental repetition rate of 19.352 MHz. The output central wavelength, pulse energy, pulse duration, and signal to noise ratio of the radio frequency spectrum were 1530 nm,18.5 pJ, 1.08 ps, and 60 dBm, respectively. These results demonstrate that the MBE technique could provide a controllable and repeatable method for the fabrication of identical high-quality TI-SAs, which is critically important for ultra-fast pulse generation.
140.4050 Mode-locked lasers 160.4236 Nanomaterials 
Chinese Optics Letters
2019, 17(7): 071403
Author Affiliations
Abstract
1 State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
2 National Research Center for Optoelectronic Engineering, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100871, China
3 Ultrafast Laser Laboratory, Key Laboratory of Opto-electronic Information Technical Science of Ministry of Education, School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
4 Huakuai Photonic Technologies Inc., Zhongshan 528400, China
We demonstrate a strain compensated long lifetime semiconductor saturable absorber mirror (SESAM) with a high modulation depth for fiber lasers. The SESAM was measured to have a damage threshold of 9.5 mJ/cm2, a modulation depth of 11.5%, a saturation fluence of 39.3 μJ/cm2, and an inversed saturable absorption coefficient of 630 mJ/cm2. The SESAM has been applied to a linear cavity mode-locked Yb-doped fiber laser, which has been working for more than a year without damage of the SESAM.
140.4050 Mode-locked lasers 140.3510 Lasers, fiber 160.6000 Semiconductor materials 
Chinese Optics Letters
2019, 17(7): 071404
Author Affiliations
Abstract
1 State Key Laboratory of Advanced Optical Communication System and Networks, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
2 Key Laboratory of Precision Opto-Mechatronics Technology, Ministry of Education, School of Instrumentation Science & Optoelectronics Engineering, Beihang University, Beijing 100191, China
We present an Er-doped fiber (Er:fiber)-based femtosecond laser at 780 nm with 256 MHz repetition rate, 191 fs pulse duration, and over 1 W average power. Apart from the careful third-order dispersion management, we introduce moderate self-phase modulation to broaden the output spectrum of the Er:fiber amplifier and achieve 193 fs pulse duration and 2.43 W average power. Over 40% frequency doubling efficiency is obtained by a periodically poled lithium niobate crystal. Delivering through a hollow-core photonic bandgap fiber, this robust laser becomes an ideal and convenient light source for two-photon autofluorescence imaging.
140.7090 Ultrafast lasers 140.3500 Lasers, erbium 140.3515 Lasers, frequency doubled 
Chinese Optics Letters
2019, 17(7): 071405
Author Affiliations
Abstract
1 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
2 State Key Laboratory of Pulsed Power Laser Technology, Changsha 410073, China
3 Hunan Provincial Key Laboratory of High Energy Laser Technology, Changsha 410073, China
We report here a single-pass 1.56 μm fiber gas Raman laser in a deuterium-filled hollow-core fiber and a 2.86 μm cascade fiber gas Raman laser with methane in the second stage. The maximum output powers at 1.56 and 2.86 μm are 27 and 8.5 mW with Raman conversion efficiency of 30% and 42%, respectively. The results offer a new method to produce a 1.5 μm fiber source and prove the potential of the cascade fiber gas Raman laser in extending the available wavelength.
140.3280 Laser amplifiers 140.3510 Lasers, fiber 140.3550 Lasers, Raman 140.4130 Molecular gas lasers 
Chinese Optics Letters
2019, 17(7): 071406
Author Affiliations
Abstract
1 Key Laboratory of Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
We demonstrate the frequency stabilization of a 1.55 μm erbium-doped fiber laser by locking it to a 5-km-long optical fiber delay line (FDL). The stabilized laser is characterized via comparison with a second identical laser system. We obtain a fractional frequency stability of better than 3 × 10 15 over time scales of 1–10 s and a laser linewidth of 0.2 Hz, which is the narrowest linewidth of an FDL-stabilized laser observed to date.
140.3425 Laser stabilization 060.2310 Fiber optics 060.2840 Heterodyne 
Chinese Optics Letters
2019, 17(7): 071407
Author Affiliations
Abstract
State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
All-optical logic gates including AND, XOR, and NOT gates, as well as a half-adder, are realized based on two-dimensional lithium niobate photonic crystal (PhC) circuits with PhC micro-cavities. The proposed all-optical devices have an extinction ratio as high as 23 dB due to the effective all-optical switch function induced by two-missing-hole micro-cavities. These proposed devices can have potential implementation of complex integrated optical functionalities including all-optical computing in a lithium niobate slab or thin film.
230.3750 Optical logic devices 230.5298 Photonic crystals 
Chinese Optics Letters
2019, 17(7): 072301
Author Affiliations
Abstract
1 State Key Laboratory for Manufacturing System Engineering and Key Laboratory of Photonics Technology for Information of Shaanxi Province, School of Electronics & Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
2 School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
In this Letter, we propose the electronic manipulation of localized surface plasmon resonance for active tuning in near-field nanofocusing. We theoretically studied the excited graphene tuning of the nanofocusing field in few-layer graphene (FLG)-based hybrid nanotips. It is revealed that the normalized enhanced electric field can be significantly promoted to more than 300 times. It is also observed that resonant peaks can be unprecedently modified by the electron state of excited graphene that is embedded in the substrate. It shows the possibility of flexible tuning of plasmon resonances via controlling the electron excitation state of graphene for specific advanced near-field nanofocusing applications.
250.5403 Plasmonics 000.6800 Theoretical physics 260.2110 Electromagnetic optics 
Chinese Optics Letters
2019, 17(7): 072501
Author Affiliations
Abstract
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Squeezed states belong to the most prominent non-classical resources. They have compelling applications in precise measurement, quantum computation, and detection. Here, we report on the direct measurement of 13.8 dB squeezed vacuum states by improving the interference efficiency and gain of balanced homodyne detection. By employing an auxiliary laser beam, the homodyne visibility is increased to 99.8%. The equivalent loss of the electronic noise is reduced to 0.05% by integrating a junction field-effect transistor (JFET) buffering input and another JFET bootstrap structure in the balanced homodyne detector.
270.6570 Squeezed states 190.4410 Nonlinear optics, parametric processes 
Chinese Optics Letters
2019, 17(7): 072701
Author Affiliations
Abstract
1 School of Electronic and Information Engineering, Beihang University, Beijing 100191, China
2 Beijing Key Laboratory for Microwave Sensing and Security Applications, Beihang University, Beijing 100191, China
High-resolution frequency-domain spectroscopy (FDS) is set up using a coherent and continuous wave terahertz (THz) emitter and receiver. THz waves are generated and detected by two photomixers with two distributed feedback (DFB) lasers. Atmospheric water vapor with different relative humidity is systematically investigated by the FDS. A high-frequency resolution of ~14 MHz is obtained with the help of Hilbert transformation, leading to a well resolved and distinct transmittance characterization of water vapor. Compared with conventional THz time-domain spectroscopy, the high-resolution continuous wave THz spectrometer is one of the most practical systems in gas-phase molecular sensing, identification, and monitoring.
300.6495 Spectroscopy, teraherz 010.7340 Water 010.0280 Remote sensing and sensors 
Chinese Optics Letters
2019, 17(7): 073001