Chinese Optics Letters
Search

2021, 19(4) Column

MORE

Chinese Optics Letters 第19卷 第4期

Author Affiliations
Abstract
1 Beijing Key Laboratory of Space-Ground Interconnection and Convergence, School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
2 Institute of Electronic and Information Industry, China Center for Information Industry Development, Beijing 100876, China
3 Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou 510632, China
This paper proposes a hybrid layered asymmetrically clipped optical (HLACO) single-carrier frequency-division multiplexing (SCFDM) scheme for dimmable visible light communication. It designs a signal structure that combines layered asymmetrically clipped optical (LACO)-SCFDM and negative LACO-SCFDM in proportion for improving the inherent weaknesses of orthogonal frequency-division multiplexing (OFDM)-based dimmable schemes and further enhancing the system performance. Compared to the HLACO-OFDM-based dimming scheme, it obtains a lower bit error ratio and enables efficient communication over broader dimming range. Its spectral efficiency realizes 2.875 bit·s-1·Hz-1 within the dimming range of 30%–70%, and the attainable average spectral efficiency gains exceed at least 19.21% compared to other traditional dimmable schemes.
dimming control single-carrier frequency-division multiplexing visible light communication spectral efficiency complexity 
Chinese Optics Letters
2021, 19(4): 040601
Xin Zhong 1,2Xinwei Wang 1,2,3,*Liang Sun 1Yan Zhou 1,2,3
Author Affiliations
Abstract
1 Optoelectronics System Laboratory, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2 College of Materials Science and Opto-Electronics Technology, University of Chinese Academy of Sciences, Beijing 100049, China
3 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
An enhancement method of rapid lifetime determination is proposed for time-resolved fluorescence imaging to discriminate substances with approximate fluorescence lifetime in forensic examination. In the method, an image-exclusive-OR treatment with filter threshold adaptively chosen is presented to extract the region of interest from dual-gated fluorescence intensity images, and then the fluorescence lifetime image is reconstructed based on the rapid lifetime determination algorithm. Furthermore, a maximum and minimum threshold filtering is developed to automatically realize visualization enhancement of the lifetime image. In proof experiments, compared with traditional fluorescence intensity imaging and rapid lifetime determination method, the proposed method automatically distinguishes altered and obliterated documents written by two brands of highlighters with the same color and close fluorescence lifetime.
time-resolved fluorescence imaging fluorescence lifetime image visualization enhancement dual-gated intensity-correlation forensic examination 
Chinese Optics Letters
2021, 19(4): 041101
Author Affiliations
Abstract
1 Department of Physics, College of Liberal Arts and Science, National University of Defense Technology, Changsha 410073, China
2 Interdisciplinary Center of Quantum Information, National University of Defense Technology, Changsha 410073, China
Applications of ghost imaging are limited by the requirement on a large number of samplings. Based on the observation that the edge area contains more information thus requiring a larger number of samplings, we propose a feedback ghost imaging strategy to reduce the number of required samplings. The field of view is gradually concentrated onto the edge area, with the size of illumination speckles getting smaller. Experimentally, images of high quality and resolution are successfully reconstructed with much fewer samplings and linear algorithm.
computational ghost imaging adaptive imaging 
Chinese Optics Letters
2021, 19(4): 041102
Author Affiliations
Abstract
1 Key Laboratory for Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Wuhan Optics Valley Aerospace Sanjiang Laser Industrial Technology Research Institute Co., Ltd., Wuhan 430075, China
4 Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
The influence of the sparsity of random speckle illumination on traditional ghost imaging (GI) and GI via sparsity constraint (GISC) in a noise environment is investigated. The experiments demonstrate that both GI and GISC obtain their best imaging quality when the sparsity of random speckle illumination is 0.5, which is also explained by some parameters such as detection of the signal to noise ratio and mutual coherence of the measurement matrix.
ghost imaging sparsity speckle illumination noise environment 
Chinese Optics Letters
2021, 19(4): 041103
Author Affiliations
Abstract
School of Electronics and Information Engineering, Harbin Institute of Technology, Shenzhen 518055, China
A fiber-optic sensor for the simultaneous measurement of strain and temperature is proposed and experimentally demonstrated based on Fabry–Pérot (FP) interference and the antiresonance (AR) mechanism. The sensor was implemented using a single-mode fiber (SMF)–hollow-core fiber–SMF structure. A temperature sensitivity of 21.11 pm/°C was achieved by tracing the troughs of the envelope caused by the AR mechanism, and a strain sensitivity of 2 pm/με was achieved by detecting the fine fringes caused by the FP cavity. The results indicate that the dual-parameter sensor is stable and reliable.
fiber-optic sensor Fabry–Pérot interference antiresonance 
Chinese Optics Letters
2021, 19(4): 041201
Author Affiliations
Abstract
1 College of Science, Harbin Engineering University, Harbin 150001, China
2 Photonics Research Center, Guilin University of Electronics Technology, Guilin 541004, China
We propose and investigate a compact optical fiber sensor that aims to measure the torsion in both amount and direction with high sensitivity. This sensor is configured by a triangular-prism-shaped long-period fiber grating, which is fabricated by the high frequency CO2 laser polished method. The unique design of the triangular-shaped structure breaks the rotational symmetry of the optical fiber and provides high sensitivity for torsion measurement. In preliminary experiments, the torsion response of the sensor achieves a good stability and linearity. The torsion sensitivity is 0.54 nm/(rad/m), which renders the proposed structure a highly sensitive torsion sensor.
long-period fiber grating torsion sensor CO2 laser etched method 
Chinese Optics Letters
2021, 19(4): 041202
Feng Qiu 1,2,*Yu Han 3
Author Affiliations
Abstract
1 Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
2 Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, China
3 Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
Electro-optic (EO) ring resonator modulators have a number of communications and scientific applications, including analog optical links, optical signal processing, and frequency comb generation. Among the EO materials used to fabricate ring modulators, the EO polymer has many promising characteristics, including a high EO coefficient of 100–200 pm/V (3–7 times larger than that of LiNbO3), an ultrafast EO response time (<10 fs), a low dielectric constant (3 to 4) with very little dispersion up to at least 250 GHz, and a straightforward spin-coating fabrication process. These inherent characteristics will be able to combine excellent EO properties with simple processing in achieving exceptional performance in a variety of high-speed optical modulation and sensing devices. This review focuses on the research and recent development of ring resonator modulators based on EO polymers. The first part describes the operation principle of EO ring resonator modulators, such as modulation mechanism, EO tunability, and 3 dB bandwidth. Subsequently, the emphasis is placed on the discussion of the ring modulators with EO polymers as the waveguide core and the improvement of EO modulation by using an EO polymer/titanium dioxide hybrid core. At the end, a series of EO polymers on silicon platforms including slot modulators, etching-free modulators, and athermal modulators are reviewed.
electro-optic polymer ring resonator high-bandwidth modulator 
Chinese Optics Letters
2021, 19(4): 041301
Author Affiliations
Abstract
1 State Key Laboratory of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-technology, Northwest University, Xi’an 710069, China
2 Shaanxi Engineering Technology Research Center for Solid State Lasers and Application, Provincial Key Laboratory of Photo-electronic Technology, Northwest University, Xi’an 710069, China
We reported a wavelength-flexible all-polarization-maintaining self-sweeping fiber laser based on the intracavity loss tuning brought by the bent optical fiber. The bidirectional cavity structure achieved the self-sweeping effect due to the appearance of the dynamic grating in the active fiber with the spatial hole burning effect. Under this, a section of fiber was bent into a circle for adjusting the loss of the cavity. With a descending diameter of bent fiber circle, the sweeping range moves to the shorter wavelength and covers a wide range from 1055.6 to 1034.6 nm eventually. Both the initial wavelength of self-sweeping regime and the threshold of the fiber laser show exponential correlation with the diameter of the circular fiber. Our work provides a compact and low-cost way to achieve the broad wavelength-flexible self-sweeping operation.
fiber laser self-sweeping effect bidirectional cavity flexible wavelength all-polarization maintaining 
Chinese Optics Letters
2021, 19(4): 041401
Author Affiliations
Abstract
1 State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
2 Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
In order to reveal the evolution mechanism of repaired morphology and the material’s migration mechanism on the crack surface in the process of CO2 laser repairing surface damage of fused silica optics, two multi-physics coupling mathematical models with different scales are developed, respectively. The physical problems, such as heat and mass transfer, material phase transition, melt flow, evaporation removal, and crack healing, are analyzed. Studies show that material ablation and the gasification recoil pressure accompanying the material splash are the leading factors in forming the Gaussian crater with a raised rim feature. The use of low-power lasers for a long time can fully melt the material around the crack before healing, which can greatly reduce the size of the residual air layer. Combined with the experimental research, the methods to suppress the negative factors (e.g., raised rim, deposited debris, air bubbles) in the CO2 laser repairing process are proposed.
CO2 laser repairing fused silica crack healing surface evolution 
Chinese Optics Letters
2021, 19(4): 041402
Author Affiliations
Abstract
1 Shenzhen Key Laboratory of Laser Engineering, Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
2 College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
3 College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
4 Shenzhen Institute of Information Technology, Shenzhen 518172, China
5 Han’s Laser Technology Industry Group Co., Ltd., Shenzhen 518057, China
We experimentally demonstrate an all-fiber supercontinuum source that covers the spectral region ranging from visible to mid-infrared. The ultra-broadband supercontinuum is realized by pumping a cascaded photonic crystal fiber and a highly nonlinear fiber with a 1/1.5 μm dual-band pump source. A maximum output power of 9.01 W is achieved using the system, which is the highest power ever achieved from a supercontinuum source spanning from the visible to mid-infrared.
fiber lasers supercontinuum generation nonlinear optics 
Chinese Optics Letters
2021, 19(4): 041403
Author Affiliations
Abstract
School of Science, Shandong Jianzhu University, Jinan 250101, China
After the three-dimensional self-affine fractal random surface simulation, we use the optical scattering theory to calculate the deep Fresnel region speckle (DFRS) under consideration of the more strict shadowing effect. The evolution of DFRS with the scattering distance and the intensity probability distribution are studied. It is found that the morphology of the scatterer has an antisymmetric relationship with the intensity distribution of DFRS, and the effect of micro-lenses on the scattering surface causes the intensity probability distribution of DFRS to deviate from the Gaussian speckle in the high light intensity area.
speckle simulation shadowing effect deep Fresnel region 
Chinese Optics Letters
2021, 19(4): 041404
Author Affiliations
Abstract
1 College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China
2 Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
3 Key Laboratory of Transparent and Opto-functional Inorganic Materials, Artificial Crystal Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
4 School of Physics and Astronomy, Yunnan University, Kunming 650091, China
The anisotropy of thermal property in an Yb,Nd:Sc2SiO5 crystal is investigated from the temperature of 293 to 573 K. Based on the systematical study of thermal expansion, thermal diffusivity, and specific heat, the thermal conductivity in Yb,Nd:Sc2SiO5 crystals orientated at (100), (010), (001), and (406) is calculated to be 3.46, 2.60, 3.35, and 3.68 W/(m·K), respectively. The laser output anisotropy of a continuous-wave (CW) and tunable laser is characterized, accordingly. A maximum output power of 6.09 W is achieved in the Yb,Nd:Sc2SiO5 crystal with (010) direction, corresponding to a slope efficiency of 48.56%. The tuning wavelength range in the Yb,Nd:Sc2SiO5 crystal orientated at (100), (010), and (001) is 68, 67, and 65 nm, separately. The effects of thermal properties on CW laser performance are discussed.
anisotropy thermal property tunable laser Yb,Nd:Sc2SiO5 crystal 
Chinese Optics Letters
2021, 19(4): 041405
Fangyuan Meng 1,2,3Hongyan Yu 1,2,3,*Xuliang Zhou 1,2,3,**Yajie Li 1,2,3[ ... ]Jiaoqing Pan 1,2,3
Author Affiliations
Abstract
1 Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3 Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083, China
4 School of Physics, Peking University, Beijing 100871, China
Gas sensing for measurement of gas components, concentrations, and other parameters plays an important role in many fields. In this Letter, a micro-ring resonator laser used for gas sensing is experimentally demonstrated. The multi-quantum-wells micro-ring laser based on whispering-gallery modes with an annular resonator and an output waveguide was fabricated. A single-mode laser with a wavelength of 1746.4 nm was fabricated for the first time, to the best of our knowledge, experimentally. The output power of 1.65 mW under 40 mA injection current was obtained with a side-mode suppression ratio over 33 dB.
gas sensing whispering-gallery mode micro-ring resonator laser 
Chinese Optics Letters
2021, 19(4): 041406
Author Affiliations
Abstract
1 School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
2 National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
Floquet topological insulators (FTIs) have been used to study the topological features of a dynamic quantum system within the band structure. However, it is difficult to directly observe the dynamic modulation of band structures in FTIs. Here, we implement the dynamic Su–Schrieffer–Heeger model in periodically curved waveguides to explore new behaviors in FTIs using light field evolutions. Changing the driving frequency produces near-field evolutions of light in the high-frequency curved waveguide array that are equivalent to the behaviors in straight arrays. Furthermore, at modest driving frequencies, the field evolutions in the system show boundary propagation, which are related to topological edge modes. Finally, we believe curved waveguides enable profound possibilities for the further development of Floquet engineering in periodically driven systems, which ranges from condensed matter physics to photonics.
topological photonics insulator waveguide array Floquet 
Chinese Optics Letters
2021, 19(4): 042601
Author Affiliations
Abstract
1 College of Energy, Soochow University, Suzhou 215006, China
2 School of Physical Science and Technology, Soochow University, Suzhou 215006, China
3 College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
4 School of Science, North University of China, Taiyuan 030051, China
In this work, inspired by advances in twisted two-dimensional materials, we design and study a new type of optical bi-layer metasurface system, which is based on subwavelength metal slit arrays with phase-gradient modulation, referred to as metagratings (MGs). It is shown that due to the found reversed diffraction law, the interlayer interaction that can be simply adjusted by the gap size can produce a transition from optical beam splitting to high-efficiency asymmetric transmission of incident light from two opposite directions. Our results provide new physics and some advantages for designing subwavelength optical devices to realize efficient wavefront manipulation and one-way propagation.
asymmetric transmission high efficiency bi-layer metagratings abrupt phase control 
Chinese Optics Letters
2021, 19(4): 042602
Author Affiliations
Abstract
1 State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
We present a velocity-gauge model for the generation of even-order high harmonics, and reveal that the even-order harmonics originate from the multiple-step transitions among the energy bands in momentum space, while the odd-order harmonics are mainly from direct transitions. The lower valence band is found vital for the generation of even harmonics. Relative intensity of even-order harmonics versus the odd orders is calculated and shows a growing trend as the laser field amplitude increases.
solid high-harmonic generation inversion asymmetry even-order harmonics 
Chinese Optics Letters
2021, 19(4): 043201