High Power Laser Science and Engineering
Search

2020, 8(4) Column

MORE

High Power Laser Science and Engineering 第8卷 第4期

Author Affiliations
Abstract
1 GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Tecnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
2 Central Laser Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, UK
3 INFN-LNF, Via Enrico Fermi 54, 00044Frascati, Italy
4 School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
A petawatt facility fully based on noncollinear optical parametric chirped pulse amplification (NOPCPA) technology, Vulcan OPPEL (Vulcan OPCPA PEtawatt Laser), is presented. This system will be coupled with the existing hybrid-CPA/OPCPA VULCAN laser system (500 J, 500 fs beamline; 250 J, ns regime beamline) based on Nd:glass amplification. Its pulse duration (20 times shorter) combined with the system design will allow the auxiliary beamline and its secondary sources to be used as probe beams for longer pulses and their interactions with targets. The newly designed system will be mainly dedicated to electron beam generation, but could also be used to perform a variety of particle acceleration and optical radiation detection experimental campaigns. In this communication, we present the entire beamline design discussing the technology choices and the design supported by extensive simulations for each system section. Finally, we present experimental results and details of our commissioned NOPCPA picosecond front end, delivering 1.5 mJ, ~180 nm (1/e2) of bandwidth compressed to sub-15 fs.
high-power laser LBO nonlinear crystal nonlinear optics ultra-broadband OPA ultrafast laser 
High Power Laser Science and Engineering
2020, 8(4): 04000e31
Author Affiliations
Abstract
1 State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai200062, China
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan030006, China
3 Science and Technology on Electronic Test & Measurement Laboratory, The 41st Research Institute of CETC, Qingdao266000, China
We report on the generation of a mid-infrared (mid-IR) frequency comb with a maximum average output power of 250 mW and tunability in the 2.7–4.0 μm region. The approach is based on a single-stage difference frequency generation (DFG) starting from a compact Yb-doped fiber laser system. The repetition rate of the near-infrared (NIR) comb is locked at 75 MHz. The phase noise of the repetition rate in the offset-free mid-IR comb system is measured and analyzed. Except for the intrinsic of NIR comb, environmental noise at low frequency and quantum noise at high frequency from the amplifier chain and nonlinear spectral broadening are the main noise sources of broadening the linewidth of comb teeth, which limits the precision of mid-IR dual-comb spectroscopy.
fiber laser mid-infrared optical frequency comb 
High Power Laser Science and Engineering
2020, 8(4): 04000e32
Author Affiliations
Abstract
College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
We report a 2 kW all-fiberized Raman fiber amplifier with efficient brightness enhancement based on the graded-index fiber. The maximum power output reaches up to 2.034 kW centered at 1130 nm, with a conversion efficiency of 79.35% with respect to the injected pump power. To the best of our knowledge, this is the highest conversion efficiency obtained for any Raman laser system using graded-index fiber. An optimized fiber combiner adopting graded-index fiber as the pigtail fiber was fabricated, enabling the preservation of the seeding brightness in the core-pumped Raman fiber amplifier, and further enhancing the ultimate brightness of the output laser after amplification. At the maximum power output, the beam quality parameter M2 is 2.8, corresponding to a signal-to-pump brightness enhancement factor of 11.2. As far as we know, we obtain the highest brightness enhancement among Raman fiber lasers of over 100 W, and the best beam quality for graded-index Raman fiber lasers of over 150 W.
nonlinear optics optical fiber lasers power amplifiers Raman scattering 
High Power Laser Science and Engineering
2020, 8(4): 04000e33
Author Affiliations
Abstract
1 CAS Key Laboratory of Geospace Environment and Department of Engineering and Applied Physics, University of Science and Technology of China, Hefei230026, China
2 Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang621900, China
3 CAS Center for Excellence in Ultra-intense Laser Science (CEULS), Shanghai200031, China
4 IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai200240, China
In the laser plasma interaction of quantum electrodynamics (QED)-dominated regime, γ-rays are generated due to synchrotron radiation from high-energy electrons traveling in a strong background electromagnetic field. With the aid of 2D particle-in-cell code including QED physics, we investigate the preplasma effect on the γ-ray generation during the interaction between an ultraintense laser pulse and solid targets. We found that with the increasing preplasma scale length, the γ-ray emission is enhanced significantly and finally reaches a steady state. Meanwhile, the γ-ray beam becomes collimated. This shows that, in some cases, the preplasmas will be piled up acting as a plasma mirror in the underdense preplasma region, where the γ-rays are produced by the collision between the forward electrons and the reflected laser fields from the piled plasma. The piled plasma plays the same role as the usual reflection mirror made from a solid target. Thus, a single solid target with proper scale length preplasma can serve as a manufactural and robust γ-ray source.
gamma-ray plasma mirror preplasma 
High Power Laser Science and Engineering
2020, 8(4): 04000e34
Author Affiliations
Abstract
1 Center for Advanced Material Diagnostic Technology, and College of Engineering Physics, Shenzhen Technology University, Shenzhen518118, China
2 College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
This study develops a Yb:KGW dual-crystal based regenerative amplifier. The thermal lensing and gain-narrowing effects are compensated by the dual-crystal configuration. Sub-nanojoule pulses are amplified to 1.5 mJ with 9 nm spectral bandwidth and 1 kHz repetition rate using chirped pulse amplification technology. Consequently, 1.2 mJ pulses with a pulse duration of 227 fs are obtained after compression. Thanks to the cavity design, the output laser was a near diffraction limited beam with M2 around 1.1. The amplifier has the potential to boost energy above 2 mJ after compression and act as a front end for a future kilohertz terawatt-class diode-pumped Yb:KGW laser system.
ultrafast laser regenerative amplifier thermal lensing effect compensation 
High Power Laser Science and Engineering
2020, 8(4): 04000e35
Author Affiliations
Abstract
1 Peter Grünberg Institut (PGI-6), Forschungszentrum Jülich, Jülich, Germany
2 Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
3 State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai201800, China
4 CAS Center for Excellence in Ultra-intense Laser Science, Shanghai201800, China
5 JARA-FAME (Forces and Matter Experiments), Forschungszentrum Jülich and RWTH Aachen University, Aachen, Germany
6 Institut für Kernphysik (IKP-4), Forschungszentrum Jülich, Jülich, Germany
The acceleration of polarized electrons, positrons, protons and ions in strong laser and plasma fields is a very attractive option for obtaining polarized beams in the multi-mega-electron volt range. Recently, there has been substantial progress in the understanding of the dominant mechanisms leading to high degrees of polarization, in the numerical modeling of these processes and in their experimental implementation. This review paper presents an overview on the current state of the field, and on the concepts of polarized laser–plasma accelerators and of beam polarimetry.
high power laser laser-driven plasma accelerator laser–plasma interactions PIC simulations polarized particle beams 
High Power Laser Science and Engineering
2020, 8(4): 04000e36
Author Affiliations
Abstract
1 State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin150001, China
2 Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang621900, China
To determine whether a potassium dihydrogen phosphate (KDP) surface mitigated by micro-milling would potentially threaten downstream optics, we calculated the light-field modulation based on angular spectrum diffraction theory, and performed a laser damage test on downstream fused silica. The results showed that the downstream light intensification caused by a Gaussian mitigation pit of 800 μm width and 10 μm depth reached a peak value near the KDP rear surface, decreased sharply afterward, and eventually kept stable with the increase in downstream distance. The solved peak value of light intensification exceeded 6 in a range 8–19 mm downstream from the KDP rear surface, which is the most dangerous for downstream optics. Laser damage sites were then induced on the fused silica surface in subsequent laser damage tests. When the distance downstream was greater than 44 mm with a downstream light intensification of less than 3, there were no potential damage threats to downstream optics. The study proves that a mitigated KDP surface can cause laser damage to downstream optical components, to which attention should be paid in an actual application. Through this work, we find that the current manufacturing process and the mitigation index still need to be improved. The research methods and calculation models are also of great reference significance for related studies like optics mitigation and laser damage.
downstream threats KDP laser damage micro-milling mitigation 
High Power Laser Science and Engineering
2020, 8(4): 04000e37
Author Affiliations
Abstract
1 Key Laboratory of Beam Technology of the Ministry of Education, and College of Nuclear Science and Technology, Beijing Normal University, Beijing100875, China
2 Xinjiang Police College, Urumqi830011, China
3 School of Science, China University of Mining and Technology, Beijing100083, China
4 Beijing Radiation Center, Beijing100875, China
Using the Dirac–Heisenberg–Wigner formalism, effects of the asymmetric pulse shape on the generation of electron-positron pairs in three typical polarized fields, i.e., linear, middle elliptical and circular fields, are investigated. Two kinds of asymmetries for the falling pulse length, short and elongated, are studied. We find that the interference effect disappears with the shorter pulse length and that the peak value of the momentum spectrum is concentrated in the center of the momentum space. In the case of the extending falling pulse length, a multiring structure without interference appears in the momentum spectrum. Research results show that the momentum spectrum is very sensitive to the asymmetry of the pulse as well as to the polarization of the fields. We also find that the number density of electron-positron pairs under different polarizations is sensitive to the asymmetry of the electric field. For the short falling pulse, the number density can be significantly enhanced by over two orders of magnitude. These results could be useful in planning high-power and/or high-intensity laser experiments.
asymmetric pulse electron-positron pair production polarized fields 
High Power Laser Science and Engineering
2020, 8(4): 04000e38
Author Affiliations
Abstract
National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin150001, China
A single-frequency pulsed holmium-doped yttrium lithium fluoride (Ho:YLF) amplifier pumped by a Tm-doped fiber laser was demonstrated. The seed was an injection-seeded Q-switched Ho:YLF laser. The output energy from the single-frequency pulsed amplifier was 24.2 mJ, with a pulse width of 250 ns at a pulse repetition frequency (PRF) of 100 Hz. The energy stability during 30 min was improved to 1% after the single-frequency pulsed Ho:YLF laser was amplified. The line width of the single-frequency pulsed spectrum of the Ho:YLF amplifier was 2.81 MHz. The single-frequency pulsed Ho:YLF amplifier can be applied to differential absorption lidar (DIAL), since its output spectrum is around the P12 CO2 absorption line.
differential absorption lidar Ho:YLF amplifier P12 CO2 absorption line single frequency 
High Power Laser Science and Engineering
2020, 8(4): 04000e39
Author Affiliations
Abstract
1 School of Physical Science and Technology, Inner Mongolia Key Laboratory of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021, China
2 State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China
In this paper, we innovatively conduct a Porro prism-based beam pointing stability promotion technique research and realize a high-performance rod-type photonic crystal fiber-based chirped pulse amplification (CPA) system, mainly including a frequency-reduced all-fiber pre-amplification stage, photonic crystal rod-based main amplification stage, and 1600 lines/mm transmission grating-pair compressor. Laser output with average power of 50 W, repetition rates of 500 kHz, pulse energy of 100 μJ, pulse duration of 830 fs, beam quality of M2<1.3, power fluctuation of 0.55% root mean square, and beam pointing drift of 19 μrad/°C over 8 h is realized. The high-performance laser system has an enormous application potential in fundamental research and precision manufacturing fields.
chirped pulse amplification ultrashort pulses high performance laser system 
High Power Laser Science and Engineering
2020, 8(4): 04000e40
Author Affiliations
Abstract
1 State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing100871, China
2 State Key Laborartory of Laser Interaction with Matter, Northwest Institute of Nuclear Technology, Xi’an710024, China
3 Fakultät für Physik, Ludwig-Maximilians-University, D-85748Garching, Germany
Single-shot laser-induced damage threshold (LIDT) measurements of multi-type free-standing ultrathin foils were performed in a vacuum environment for 800 nm laser pulses with durations τ ranging from 50 fs to 200 ps. The results show that the laser damage threshold fluences (DTFs) of the ultrathin foils are significantly lower than those of corresponding bulk materials. Wide band gap dielectric targets such as SiN and formvar have larger DTFs than semiconductive and conductive targets by 1–3 orders of magnitude depending on the pulse duration. The damage mechanisms for different types of targets are studied. Based on the measurement, the constrain of the LIDTs on the laser contrast is discussed.
laser-induced damage threshold ultrathin targets laser-driven ion acceleration 
High Power Laser Science and Engineering
2020, 8(4): 04000e41
Author Affiliations
Abstract
1 Foundation for Research and Technology-Hellas, Institute of Electronic Structure and Laser, 70013Heraklion (Crete), Greece
2 Department of Physics, University of Crete, 70013Heraklion (Crete), Greece
3 Mechanical Engineering Department, School of Applied Sciences, Hellenic Mediterranean University, 71410Heraklion, Greece
4 ELI-ALPS, ELI-Hu Non-Profit Ltd., H-6720Szeged, Hungary
Nonclassical light sources have a vital role in quantum optics as they offer a unique resource for studies in quantum technology. However, their applicability is restricted by their low intensity, while the development of new schemes producing intense nonclassical light is a challenging task. In this perspective article, we discuss potential schemes that could be used towards the development of high photon flux nonclassical light sources and their future prospects in nonlinear optics.
quantum optics nonlinear optics high-power lasers 
High Power Laser Science and Engineering
2020, 8(4): 04000e42
Author Affiliations
Abstract
1 Thales LAS France, 78990Élancourt, France
2 Thales Systems Romania, 060071București, Romania
3 Extreme Light Infrastructure – Nuclear Physics, ‘Horia Hulubei’ National Institute for Physics and Nuclear Engineering, 077125Bucharest Magurele, Romania
4 University of Bucharest, Faculty of Physics, 077125Bucharest Magurele, Romania
We report on a two-arm hybrid high-power laser system (HPLS) able to deliver 2 × 10 PW femtosecond pulses, developed at the Bucharest-Magurele Extreme Light Infrastructure Nuclear Physics (ELI-NP) Facility. A hybrid front-end (FE) based on a Ti:sapphire chirped pulse amplifier and a picosecond optical parametric chirped pulse amplifier based on beta barium borate (BBO) crystals, with a cross-polarized wave (XPW) filter in between, has been developed. It delivers 10 mJ laser pulses, at 10 Hz repetition rate, with more than 70 nm spectral bandwidth and high-intensity contrast, in the range of 1013:1. The high-energy Ti:sapphire amplifier stages of both arms were seeded from this common FE. The final high-energy amplifier, equipped with a 200 mm diameter Ti:sapphire crystal, has been pumped by six 100 J nanosecond frequency doubled Nd:glass lasers, at 1 pulse/min repetition rate. More than 300 J output pulse energy has been obtained by pumping with only 80% of the whole 600 J available pump energy. The compressor has a transmission efficiency of 74% and an output pulse duration of 22.7 fs was measured, thus demonstrating that the dual-arm HPLS has the capacity to generate 10 PW peak power femtosecond pulses. The reported results represent the cornerstone of the ELI-NP 2 × 10 PW femtosecond laser facility, devoted to fundamental and applied nuclear physics research.
lasers high-power laser pulses ultra-short laser pulses 
High Power Laser Science and Engineering
2020, 8(4): 04000e43
Author Affiliations
Abstract
1 Foundation for Research and Technology - Hellas, Institute of Electronic Structure & Laser, 70013Heraklion (Crete), Greece
2 Department of Physics, University of Crete, 70013Heraklion (Crete), Greece
3 ELI-ALPS, ELI-Hu Non-Profit Ltd., H-6720Szeged, Hungary
4 School of Physical Sciences, Dublin City University, Dublin 9, Ireland
Motivated by the achieved high intensities of novel extreme ultraviolet (XUV) radiation sources, such as free electron lasers and laser-driven high harmonic generation beamlines, we elaborate on their perspective in inducing observable strong field effects. The feasibility of extending such effects from the infrared and visible spectral regimes in the XUV domain is supported through numerically calculated models of near-future experiments. We highlight the advancement of performing studies in the time domain, using ultra-short XUV pulses, which allows for the temporal evolution of such effects to be followed. Experimental and theoretical obstacles and limitations are further discussed.
strong field extreme ultraviolet high harmonic generation 
High Power Laser Science and Engineering
2020, 8(4): 04000e44
Author Affiliations
Abstract
1 Key Laboratory on High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai201800, China
2 Shanghai Institute of Laser Plasma, China Academy of Engineering Physics, Shanghai201800, China
As the key part for energy amplification of high-power laser systems, disk amplifiers must work in an extremely clean environment. Different from the traditional cleanliness control scheme of active intake and passive exhaust (AIPE), a new method of active exhaust and passive intake (AEPI) is proposed in this paper. Combined with computational fluid dynamics (CFD) technology, through the optimization design of the sizes, shapes, and locations of different outlets and inlets, the turbulence that is unfavorable to cleanliness control is effectively avoided in the disk amplifier cavity during the process of AEPI. Finally, the cleanliness control of the cavity of the disk amplifier can be realized just by once exhaust. Meanwhile, the micro negative pressure environment in the amplifier cavity produced during the exhaust process reduces the requirement for sealing. This method is simple, time saving, gas saving, efficient, and safe. It is also suitable for the cleanliness control of similar amplifiers.
active exhaust and passive intake computational fluid dynamics cleanliness control disk amplifier 
High Power Laser Science and Engineering
2020, 8(4): 04000e45