Journal of Innovative Optical Health Sciences
Search

2018, 11(2) Column

MORE

Journal of Innovative Optical Health Sciences 第11卷 第2期

Author Affiliations
Abstract
1 College of Optoelectronics Engineering Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province Shenzhen University, Shenzhen 518060, P. R. China
2 Department of Bioengineering and COMSET, Clemson University, Clemson, SC 29634, USA
Using the combination of a reflective blazed grating and a reflective phase-only diffractive spatial light modulator (SLM), scanless multitarget-matching multiphoton excitation fluorescence microscopy (SMTM-MPM) was achieved. The SLM shaped an incoming mode-locked, near-infrared Ti:sapphire laser beam into an excitation pattern with addressable shapes and sizes that matched the samples of interest in the field of view. Temporal and spatial focusing were simultaneously realized by combining an objective lens and a blazed grating. The fluorescence signal from illuminated areas was recorded by a two-dimensional sCMOS camera. Compared with a conventional temporal focusing multiphoton microscope, our microscope achieved effective use of the laser power and decreased photodamage with higher axial resolution.
Multitarget-matching multiphoton microscopy SLM temporal focusing 
Journal of Innovative Optical Health Sciences
2018, 11(2): 1750013
Author Affiliations
Abstract
School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, P. R. China
Bioluminescence tomography (BLT) is an important noninvasive optical molecular imaging modality in preclinical research. To improve the image quality, reconstruction algorithms have to deal with the inherent ill-posedness of BLT inverse problem. The sparse characteristic of bioluminescent sources in spatial distribution has been widely explored in BLT and many L1-regularized methods have been investigated due to the sparsity-inducing properties of L1 norm. In this paper, we present a reconstruction method based on L1=2 regularization to enhance sparsity of BLT solution and solve the nonconvex L1=2 norm problem by converting it to a series of weighted L1 homotopy minimization problems with iteratively updated weights. To assess the performance of the proposed reconstruction algorithm, simulations on a heterogeneous mouse model are designed to compare it with three representative sparse reconstruction algorithms, including the weighted interior-point, L1 homotopy, and the Stagewise Orthogonal Matching Pursuit algorithm. Simulation results show that the proposed method yield stable reconstruction results under different noise levels. Quantitative comparison results demonstrate that the proposed algorithm outperforms the competitor algorithms in location accuracy, multiple-source resolving and image quality.
Bioluminescence tomography L1=2 regularization inverse problem reconstruction algorithm 
Journal of Innovative Optical Health Sciences
2018, 11(2): 1750014
Author Affiliations
Abstract
1 Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
2 Department of Immunology and Key Laboratory of Medical Molecular, Virology of MOE/MOH, School of Basic Medical Sciences, and Biotherapy Research Centre, Fudan University, Shanghai 200032, P.R. China
3 Shandong Academy of Medical Sciences, Jinan 250030, P.R. China
T-cell activation requires the formation of the immunological synapse (IS) between a T-cell and an antigen-presenting cell (APC) to control the development of the adaptive immune response. However, calcium release, an initial signal of T-cell activation, has been found to occur before IS formation. The mechanism for triggering the calcium signaling and relationship between calcium release and IS formation remains unclear. Herein, using live-cell imaging, we found that intercellular adhesion molecule 1 (ICAM-1), an essential molecule for IS formation, accumulated and then was depleted at the center of the synapse before complete IS formation. During the process of ICAM-1 depletion, calcium was released. If ICAM-1 failed to be depleted from the center of the synapse, the sustained calcium signaling could not be induced. Moreover, depletion of ICAM-1 in ISs preferentially occurred with the contact of antigen-specific T-cells and dendritic cells (DCs). Blocking the binding of ICAM-1 and lymphocyte function-associated antigen 1 (LFA-1), ICAM-1 failed to deplete at the center of the synapse, and calcium release in T-cells decreased. In studying the mechanism of how the depletion of ICAM-1 could influence calciumrelease in T-cells, we found that the movement of ICAM-1 was associated with the localization of LFA-1 in the IS, which affected the localization of calcium microdomains, ORAI1 and mitochondria in IS. Therefore, the depletion of ICAM-1 in the center of the synapse is an important factor for an initial sustained calcium release in T-cells.
T-cell activation immunological synapse ICAM-1 calcium signaling 
Journal of Innovative Optical Health Sciences
2018, 11(2): 1750015
Author Affiliations
Abstract
Department of Agricultural Engineering, Faculty of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
This research aimed to establish near infrared (NIR) spectroscopy models for identification of syrup types in which the maple syrup was discriminated from other syrup types. Thirty syrup types were used in this research; the NIR spectra of each type were recorded with 10 replicates. The repeatability and reproducibility of NIR scanning were performed, and the absorbance at 6940 cm-1 was used for calculation. Principal component analysis was used to group the syrup type. Identification models were developed by soft independent modeling by class analogy (SIMCA) and partial least-squares discriminant analysis (PLS-DA). The SIMCA models of all syrup types exhibited accuracy percentage of 93.3–100% for identifying syrup types, whereas maple syrup discrimination models showed percentage of accuracy between 83.2% and 100%. The PLS-DA technique gave the accuracy of syrup types classification between 96.6% and 100% and presented ability on discrimination of maple syrup form other types of syrup with accuracy of 100%. The finding presented the potential of NIR spectroscopy for the syrup type identification.
Identification NIR spectroscopy syrup multivariate classification 
Journal of Innovative Optical Health Sciences
2018, 11(2): 1750019
Author Affiliations
Abstract
1 The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
2 College of Electronics and Information Engineering, South-Central University for Nationalities, Wuhan 430074, P. R. China
Functional research on biological macromolecules must focus on specific local regions. PDBlocal is a web-based tool developed to overcome the limitations of traditional molecular visualization tools for three-dimensional (3D) inspection of local regions. PDBlocal provides an intuitive and easy-tomanipulate web page interface and some new useful functions. It can keep local regions flashing, display sequence text that is dynamically consistent with the 3D structure in local appearance under multiple local manipulations, use two scenes to help users inspect the same local region with different statuses, list all historical manipulation statuses with a tree structure, allow users to annotate regions of interest, and save all historical statuses and other data to a web server for future research. PDBlocal has met expectations and shown satisfactory performance for both expert and novice users. This tool is available at http://labsystem.scuec.edu.cn/pdblocal/.
Biological macromolecule 3D visualization molecular local structure web Jmol 
Journal of Innovative Optical Health Sciences
2018, 11(2): 1850002
Author Affiliations
Abstract
1 Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
2 Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics — Huazhong University of Science and Technology, Wuhan, P. R. China
3 Division of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
2-Aminoethyldiphenyl borate (2-APB) is the most commonly used pharmacological agent in the study of calcium release-activated channels (CRACs); however, its inhibitory mechanism to CRACs remains unclear. To address this issue, we systematically employed confocal imaging, dual-wavelength excitation photometry and FRET to examine the effects of 2-APB on the dynamic activities and function of STIM1 and Orai1, two key components of CRACs. Imaging results support that there are two signaling pathways (Orai1-independent and Orai1-dependent) for the formation of STIM1 puncta. 2-APB could dose dependently block Orai1-independent but not Orai1-dependent STIM1 puncta formation, despite its obvious inhibition effect on storeoperated Ca2+ entry (SOCE). In addition, we found that although 2-APB could not visibly alter near plasma membrane CAD-eYFP localization, it could completely block CAD-YFP-induced constitutive Ca2+ entry and promote the interaction between Orai1 and CAD by FRET measurements. Therefore, we proposed that inhibitory action of 2-APB on SOCE might attribute to its direct inhibitory effects on Orai1 channel itself, but not the interference on puncta formation between STIM1 and Orai1.
SOCE CRAC 2-aminoethyldiphenyl borate STIM1 Orai1 confocal imaging FRET 
Journal of Innovative Optical Health Sciences
2018, 11(2): 1850003
Author Affiliations
Abstract
1 Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou, China
2 Department of Biological Engineering, Jinan University, Guangzhou, China
The moving-window bis-correlation coe±cients (MW-BiCC) was proposed and employed for the discriminant analysis of transgenic sugarcane leaves and --thalassemia with visible and nearinfrared (Vis–NIR) spectroscopy. The well-performed moving-window principal component analysis linear discriminant analysis (MW-PCA–LDA) was also conducted for comparison. A total of 306 transgenic (positive) and 150 nontransgenic (negative) leave samples of sugarcane were collected and divided to calibration, prediction, and validation. The diffuse reflection spectra were corrected using Savitzky–Golay (SG) smoothing with first-order derivative (d=1), third-degree polynomial (p=3) and 25 smoothing points (m=25). The selected waveband was 736–1054 nm with MW-BiCC, and the positive and negative validation recognition rates (V REC+, V REC-T were 100%, 98.0%, which achieved the same effect as MW-PCA–LDA. Another example, the 93 --thalassemia (positive) and 148 nonthalassemia (negative) of human hemolytic samples were collected. The transmission spectra were corrected using SG smoothing with d=1, p=3 and m=53. Using MW-BiCC, many best wavebands were selected (e.g., 1116–1146, 1794–1848 and 2284–2342nm). The V REC+ and V REC- were both 100%, which achieved the same effect as MW-PCA–LDA. Importantly, the BiCC only required calculating correlation coe±cients between the spectrum of prediction sample and the average spectra of two types of calibration samples. Thus, BiCC was very simple in algorithm, and expected to obtain more applications. The results first confirmed the feasibility of distinguishing --thalassemia and normal control samples by NIR spectroscopy, and provided a promising simple tool for large population thalassemia screening.
Visible and near-infrared spectroscopic discrimina transgenic sugarcane leaves β-thalassemia moving-window bis-correlation coe±cients moving-window principal component analysis linear 
Journal of Innovative Optical Health Sciences
2018, 11(2): 1850005
Author Affiliations
Abstract
1 College of Engineering, China Agricultural University, Beijing 100083, P. R. China
2 Institute of Food Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P. R. China
In this paper, a methodology based on characteristic spectral bands of near infrared spectroscopy (1000–2500 nm) and multivariate analysis was proposed to identify camellia oil adulteration with vegetable oils. Sunflower, peanut and corn oils were selected to conduct the test. Pure camellia oil and that adulterated with varying concentrations (1–10% with the gradient of 1%, 10–40% with the gradient of 5%, 40–100% with the gradient of 10%) of each type of the three vegetable oils were prepared, respectively. For each type of adulterated oil, full-spectrum partial least squares partial least squares (PLS) models and synergy interval partial least squares (SI-PLS) models were developed. Parameters of these models were optimized simultaneously by cross-validation. The SI-PLS models were proved to be better than the full-spectrum PLS models. In SI-PLS models, the correlation coe±cients of predition set (Rp) were 0.9992, 0.9998 and 0.9999 for adulteration with sunflower oil, peanut oil and corn oil seperately; the corresponding root mean square errors of prediction set (RMSEP) were 1.23, 0.66 and 0.37. Furthermore, a new generic PLS model was built based on the characteristic spectral regions selected from the intervals of the three SI-PLS models to identify the oil adulterants, regardless of the adultrated oil types. The model achieved with Rp 0.9988 and RMSEP=1.52. These results indicated that the characteristic near infrared spectral regions could determine the level of adulteration in the camellia oil.
Camellia oil adulteration detection characteristic near infrared spectral regions partial least squares synergy interval partial least squares 
Journal of Innovative Optical Health Sciences
2018, 11(2): 1850006