Matter and Radiation at Extremes
Search

2017, 2(2) Column

MORE

Matter and Radiation at Extremes 第2卷 第2期

Author Affiliations
Abstract
1 Laboratory for Laser Energetics, University of Rochester, Rochester, NY, USA
2 Lawrence Livermore National Laboratory, Livermore, CA, USA
3 Naval Research Laboratory, Washington, DC, USA
Along with laser-indirect (X-ray)-drive and magnetic-drive target concepts, laser direct drive is a viable approach to achieving ignition and gain with inertial confinement fusion. In the United States, a national program has been established to demonstrate and understand the physics of laser direct drive. The program utilizes the Omega Laser Facility to conduct implosion and coupling physics at the nominally 30-kJ scale and lasereplasma interaction and coupling physics at the MJ scale at the National Ignition Facility. This article will discuss the motivation and challenges for laser direct drive and the broad-based program presently underway in the United States.
Inertial fusion Inertial fusion Direct drive Direct drive Laser interactions Laser interactions Hydrodynamics Hydrodynamics Omega Omega National ignition facility National ignition facility 
Matter and Radiation at Extremes
2017, 2(2): 37
Author Affiliations
Abstract
Institute of Laser Engineering, Osaka University, Osaka 565-0871, Japan
Optimum laser configurations are presented to achieve high illumination uniformity with directly driven inertial confinement fusion targets. Assuming axisymmetric absorption pattern of individual laser beams, theoretical models are reviewed in terms of the number of laser beams, system imperfection, and laser beam patterns. Utilizing a self-organizing system of charged particles on a sphere, a simple numerical model is provided to give an optimal configuration for an arbitrary number of laser beams. As a result, such new configurations as “M48” and “M60” are found to show substantially higher illumination uniformity than any other existing direct drive systems. A new polar direct-drive scheme is proposed with the laser axes keeping off the target center, which can be applied to laser configurations designed for indirectly driven inertial fusion.
Analytical model Analytical model Laser illumination design Laser illumination design Polar direct drive Polar direct drive Inertial confinement fusion Inertial confinement fusion 
Matter and Radiation at Extremes
2017, 2(2): 55
Author Affiliations
Abstract
1 Institute of Applied Physics and Computational Mathematics, Beijing 100094, China
2 Graduate School, China Academy of Engineering Physics, Beijing 100088, China
3 Center for Applied Physics and Technology, Peking University, Beijing 100871, China
4 Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China
5 China Academy of Engineering Physics, Mianyang 621900, China
X-ray drive asymmetry is one of the main seeds of low-mode implosion asymmetry that blocks further improvement of the nuclear performance of “high-foot” experiments on the National Ignition Facility [Miller et al., Nucl. Fusion 44, S228 (2004)]. More particularly, the P2 asymmetry of Au's M-band flux can also severely influence the implosion performance of ignition capsules [Li et al., Phys. Plasmas 23, 072705 (2016)]. Here we study the smoothing effect of mid- and/or high-Z dopants in ablator on Au's M-band flux asymmetries, by modeling and comparing the implosion processes of a Ge-doped ignition capsule and a Si-doped one driven by X-ray sources with P2 M-band flux asymmetry. As the results, (1) mid- or high-Z dopants absorb hard X-rays (M-band flux) and re-emit isotropically, which helps to smooth the asymmetric Mband flux arriving at the ablation front, therefore reducing the P2 asymmetries of the imploding shell and hot spot; (2) the smoothing effect of Ge-dopant is more remarkable than Si-dopant because its opacity in Au's M-band is higher than the latter's; and (3) placing the doped layer at a larger radius in ablator is more efficient. Applying this effect may not be a main measure to reduce the low-mode implosion asymmetry, but might be of significance in some critical situations such as inertial confinement fusion (ICF) experiments very near the performance cliffs of asymmetric X-ray drives.
Inertial confinement fusion Inertial confinement fusion Implosion Implosion Low-mode distortion Low-mode distortion M-band flux asymmetry M-band flux asymmetry High-Z dopant High-Z dopant 
Matter and Radiation at Extremes
2017, 2(2): 69
Author Affiliations
Abstract
Matter and Radiation at Extremes
2017, 2(2): 87

动态信息

MORE
动态信息 丨 2019-12-16
年终大喜:MRE被SCI正式收录!
动态信息 丨 2018-09-12
MRE被ESCI收录