Opto-Electronic Advances
Search

2018, 1(5) Column

MORE

Opto-Electronic Advances 第1卷 第5期

Author Affiliations
Abstract
1 Nanophotonics Research Centre, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Shenzhen University, Shenzhen 518060, China
2 School of Engineering, RMIT University, Melbourne VIC 3000, Australia
Orbital angular momentum (OAM) mode division provides a promising solution to push past the already exhausted available degrees of freedom available in conventional optical communications. Nevertheless, the practical deployment of OAM within a free-space optical (FSO) communications system is still hampered by a major challenge, namely that OAM-based FSO links are vulnerable to disturbances. Though several techniques, such as using various non-diffraction beams and multiple transmit–receive apertures, are proposed to alleviate the influence of disturbances, these techniques significantly reduce the performance with regard to combating single fading for spatial blockages of the laser beam by obstructions. In this work, we initially demonstrate that a Fabry-Pérot resonant cavity has the ability to implement OAM mode healing, even for a blocking percentage of over 50%. Consequently, the proposed method will expand the use of OAM in the FSO secure communications and quantum encryption fields.
optical communication orbital angular momentum Fabry-Pérot cavity 
Opto-Electronic Advances
2018, 1(5): 180006
Author Affiliations
Abstract
1 Institute of Materials Research & Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singa-pore 138634, Singapore
2 Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
Metasurfaces, two-dimensional equivalents of metamaterials, are engineered surfaces consisting of deep subwavelength features that have full control of the electromagnetic waves. Metasurfaces are not only being applied to the current devices throughout the electromagnetic spectrum from microwave to optics but also inspiring many new thrilling applications such as programmable on-demand optics and photonics in future. In order to overcome the limits imposed by passive metasurfaces, extensive researches have been put on utilizing different materials and mechanisms to design active metasurfaces. In this paper, we review the recent progress in tunable and reconfigurable metasurfaces and metadevices through the different active materials deployed together with the different control mechanisms including electrical, thermal, optical, mechanical, and magnetic, and provide the perspective for their future development for applications.
tunable reconfigurable metasurface metamaterial transparent conductive oxides ferroelectrics graphene phase change material semiconductor micro-nanoelectromechanical systems 
Opto-Electronic Advances
2018, 1(5): 180009

公告

地址: 四川省成都市双流区光电大道一号中科院光电所《光电进展》编辑部
邮政编码:610209
E-mail: oea@ioe.ac.cn
电话:028-85100579
网址: https://www.oejournal.org/oea
微信号:OE_Journal (光电期刊)