Opto-Electronic Advances
Search

2019, 2(1) Column

MORE

Opto-Electronic Advances 第2卷 第1期

N/A  
Author Affiliations
Abstract
Opto-Electronic Advances
2019, 2(1): 1
Author Affiliations
Abstract
1 Laser Micro/Nano Processing Lab, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
2 Department of Experimental Teaching, Guangdong University of Technology, Guangzhou 510006, China
Transparent brittle materials such as glass and sapphire are widely concerned and applied in consumer electronics, optoelectronic devices, etc. due to their excellent physical and chemical stability and good transparency. Growing research attention has been paid to developing novel methods for high-precision and high-quality machining of transparent brittle materials in the past few decades. Among the various techniques, laser machining has been proved to be an effective and flexible way to process all kinds of transparent brittle materials. In this review, a series of laser machining methods, e.g. laser full cutting, laser scribing, laser stealth dicing, laser filament, laser induced backside dry etching (LIBDE), and laser induced backside wet etching (LIBWE) are summarized. Additionally, applications of these techniques in micromachining, drilling and cutting, and patterning are introduced in detail. Current challenges and future prospects in this field are also discussed.
transparent brittle materials glass sapphire laser machining 
Opto-Electronic Advances
2019, 2(1): 180017
Author Affiliations
Abstract
School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, 639798, Singapore
Infrared photodetectors have been used extensively in biomedicine, surveillance, communication and astronomy. However, state of the art technology based on III-V and II-VI compounds still lacks excellent performance for high-temperature operation. Surface plasmon polaritons (SPPs) have demonstrated their capability in improving the light detection from visible to infrared wave range due to their light confinement in subwavelength scale. Advanced fabrication techniques such as electron-beam lithography (EBL) and focused ion-beam (FIB), and commercially available numerical design tool like Finite-Difference Time-Domain (FDTD) have enabled rapid development of surface plasmon (SP) enhanced photodetectors. In this review article, the basic mechanisms behind the SP-enhanced photodetection, the different type of plasmonic nanostructures utilized for enhancement, and the reported SP-enhanced infrared photodetectors will be discussed.
Infrared photodetection plasmonic structures surface plasmon enhancement 
Opto-Electronic Advances
2019, 2(1): 180026

公告

地址: 四川省成都市双流区光电大道一号中科院光电所《光电进展》编辑部
邮政编码:610209
E-mail: oea@ioe.ac.cn
电话:028-85100579
网址: https://www.oejournal.org/oea
微信号:OE_Journal (光电期刊)