Opto-Electronic Advances
Search

2019, 2(7) Column

MORE

Opto-Electronic Advances 第2卷 第7期

Author Affiliations
Abstract
1 Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3 Department of Physics, Capital Normal University, Beijing Key Laboratory of Metamaterials and Devices, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, and Beijing Advanced Innovation Centre for Imaging Technology, Beijing 100048, China
4 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Metasurface provides subwavelength structures for manipulating wavefronts of light. The benefits of subwavelength components offer a continuous modulation of amplitude, phase, and polarization, thus eliminating the production of higher-order images and improving the utilization of light intensity. Despite the rapid progress in this field, multiparameter control of light using single layer metasurface is rarely reported. In fact, multiparameter control of light helps to improve information storage capacity and image fidelity. With simultaneous manipulation of polarization and amplitude at each pixel, it is possible to encode two separate images into one metasurface and reconstruct them under proper conditions. In a proof of concept experiment, we demonstrate an independent display of two binary images at the same position with polarization de-multiplexing from a single metasurface. This unique technology of encoding two images through amplitude and polarization manipulation provides a new opportunity for various applications in, such as encryption, information storage, polarization holograms, optical communications and fundamental physics.
metasurface multiparameter polarization encoding 
Opto-Electronic Advances
2019, 2(7): 07180029
Author Affiliations
Abstract
1 Graduate School of Science and Technology, Niigata University, 8050 Ikarashi-2-nocho, Nishi-ku, Niigata 950-2181, Japan
2 Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science and Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
3 Sensor Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
In this study, plasmonic nanostructures were examined to enhance the light harvesting of organic thin-film solar cells (OSCs) by multiple surface plasmon resonance (SPR) phenomena originating from the grating-coupled configuration with a Blu-ray Disc recordable (BD-R)-imprinted aluminum (Al) grating structure and the incorporation of a series of silver nanodisks (Ag NDs). The devices with such a configuration maximize the light utilization inside OSCs via light absorption, light scattering, and trapping via multiple surface plasmon resonances. Different types and sizes of metallic nanoparticles (NPs), i.e., gold nanoparticles (Au NPs), Ag nanospheres (Ag NSs), and Ag NDs, were used, which were blended separately in a PEDOT:PSS hole transport layer (HTL). The device structure comprised of grating-imprinted-Al/P3HT:PCBM/Ag ND:PEDOT:PSS/ITO. Results obtained from the J–V curves revealed that the power conversion efficiency (PCE) of grating-structured Al/P3HT:PCBM/PEDOT:PSS/ITO is 3.16%; this value is ~6% higher than that of a flat substrate. On the other hand, devices with flat Al and incorporated Au NPs, Ag NSs, or Ag NDs in the HTL exhibited PCEs ranging from 3.15% to 3.37%. Furthermore, OSCs with an Al grating substrate were developed by the incorporation of the Ag ND series into the PEDOT:PSS layer. Compared with that of a reference device, the PCEs of the devices increased to 3.32%–3.59% (11%–20% improvement), indicating that the light absorption enhancement at the active layer corresponds to the grating-coupled surface plasmon resonance and localized surface plasmon resonance excitations with strong near-field distributions penetrating into the active layer leading to higher efficiencies and subsequent better current generation.
grating-coupled surface plasmon resonance localized surface plasmon resonance Ag nanodisks organic solar cells imprinted grating 
Opto-Electronic Advances
2019, 2(7): 07190010

公告

地址: 四川省成都市双流区光电大道一号中科院光电所《光电进展》编辑部
邮政编码:610209
E-mail: oea@ioe.ac.cn
电话:028-85100579
网址: https://www.oejournal.org/oea
微信号:OE_Journal (光电期刊)