Opto-Electronic Advances
Search

2019, 2(9) Column

MORE

Opto-Electronic Advances 第2卷 第9期

Author Affiliations
Abstract
1 Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576, Singapore
2 Department of Computer Science, School of Computing, National University of Singapore, 117576, Singapore
Inverse sensing is an important research direction to provide new perspectives for optical sensing. For inverse sensing, the primary challenge is that scattered photon has a complicated profile, which is hard to derive a general solution. Instead of a general solution, it is more feasible and practical to derive a solution based on a specific environment. With deep learning, we develop a multifunctional inverse sensing approach for a specific environment. This inverse sensing approach can reconstruct the information of scattered photons and characterize multiple optical parameters simultaneously. Its functionality can be upgraded dynamically after learning more data. It has wide measurement range and can characterize the optical signals behind obstructions. The high anti-noise performance, flexible implementation, and extremely high threshold to optical damage or saturation make it useful for a wide range of applications, including self-driving car, space technology, data security, biological characterization, and integrated photonics.
deep learning optical sensing photonics 
Opto-Electronic Advances
2019, 2(9): 09190019
Author Affiliations
Abstract
1 State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
2 State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
With high hardness, high thermal and chemical stability and excellent optical performance, hard materials exhibit great potential applications in various fields, especially in harsh conditions. Femtosecond laser ablation has the capability to fabricate three-dimensional micro/nanostructures in hard materials. However, the low efficiency, low precision and high surface roughness are the main stumbling blocks for femtosecond laser processing of hard materials. So far, etching-assisted femtosecond laser modification has demonstrated to be the efficient strategy to solve the above problems when processing hard materials, including wet etching and dry etching. In this review, femtosecond laser modification that would influence the etching selectivity is introduced. The fundamental and recent applications of the two kinds of etching assisted femtosecond laser modification technologies are summarized. In addition, the challenges and application prospects of these technologies are discussed.
femtosecond laser hard materials wet etching dry etching 
Opto-Electronic Advances
2019, 2(9): 09190021

公告

地址: 四川省成都市双流区光电大道一号中科院光电所《光电进展》编辑部
邮政编码:610209
E-mail: oea@ioe.ac.cn
电话:028-85100579
网址: https://www.oejournal.org/oea
微信号:OE_Journal (光电期刊)