Opto-Electronic Advances
Search

2020, 3(7) Column

MORE

Opto-Electronic Advances 第3卷 第7期

Author Affiliations
Abstract
1 State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2 Center of Materials Science and Opto-Electronic Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3 State Key Laboratory of Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012, China
4 National Key Laboratory of Science and Technology on Electronic Test and Measurement, the 41st Research Institute, China Electronics Technology Group Corporation, Qingdao 266555, China
The generation of high-repetition rate (frep ≥ 10 GHz) ultra-broadband optical frequency combs (OFCs) at 1550 nm and 1310 nm is investigated by seeding two types of highly nonlinear fibers (HNLFs) with 10 GHz picosecond pulses at the pump wavelength of 1550 nm. When pumped near the zero dispersion wavelength (ZDW) in the normal dispersion region of a HNLF, 10 GHz flat-topped OFC with 43 nm bandwidth within 5 dB power variation is generated by self-phase modulation (SPM)-based OFC spectral broadening at 26.5 dBm pump power, and 291 fs pulse trains with 10 GHz repetition rate are obtained at 18 dBm pump power without complicated pulse shaping methods. Furthermore, when pumped in the abnormal dispersion region of a HNLF, OFCs with dispersive waves around 1310 nm are studied using a common HNLF and fluorotellurite fibers, which maintain the good coherence of the pump light at 1550 nm. At the same time, sufficient tunability of the generated dispersive waves is achieved when tuning the pump power or ZDW.
optical comb electro-optic devices ultrafast optics optical pulses nonlinear optics 
Opto-Electronic Advances
2020, 3(7): 07190033
Author Affiliations
Abstract
1 Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
2 University of Electronic Science and Technology of China, Chengdu 610054, China
Gas identification and concentration measurements are important for both understanding and monitoring a variety of phenomena from industrial processes to environmental change. Here a novel mid-IR plasmonic gas sensor with on-chip direct readout is proposed based on unity integration of narrowband spectral response, localized field enhancement and thermal detection. A systematic investigation consisting of both optical and thermal simulations for gas sensing is presented for the first time in three sensing modes including refractive index sensing, absorption sensing and spectroscopy, respectively. It is found that a detection limit less than 100 ppm for CO2 could be realized by a combination of surface plasmon resonance enhancement and metal-organic framework gas enrichment with an enhancement factor over 8000 in an ultracompact optical interaction length of only several microns. Moreover, on-chip spectroscopy is demonstrated with the compressive sensing algorithm via a narrowband plasmonic sensor array. An array of 80 such sensors with an average resonance linewidth of 10 nm reconstructs the CO2 molecular absorption spectrum with the estimated resolution of approximately 0.01 nm far beyond the state-of-the-art spectrometer. The novel device design and analytical method are expected to provide a promising technique for extensive applications of distributed or portable mid-IR gas sensor.
gas sensor mid-IR on-chip surface plasmon resonance spectroscopy 
Opto-Electronic Advances
2020, 3(7): 07190040
Author Affiliations
Abstract
1 Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Tech-nology, Beijing, 100081, China
2 Beijing Key Laboratory of Advanced Optical Remote Sensing Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
Current freeform illumination optical designs are mostly focused on producing prescribed irradiance distributions on planar targets. Here, we aim to design freeform optics that could generate a desired illumination on a curved target from a point source, which is still a challenge. We reduce the difficulties that arise from the curved target by involving its varying z-coordinates in the iterative wavefront tailoring (IWT) procedure. The new IWT-based method is developed under the stereographic coordinate system with a special mesh transformation of the source domain, which is suitable for light sources with light emissions in semi space such as LED sources. The first example demonstrates that a rectangular flat-top illumination can be generated on an undulating surface by a spherical-freeform lens for a Lambertian source. The second example shows that our method is also applicable for producing a non-uniform irradiance distribution in a circular region of the undulating surface.
freeform optics prescribed irradiance distribution curved target iterative wavefront tailoring 
Opto-Electronic Advances
2020, 3(7): 07200010

公告

地址: 四川省成都市双流区光电大道一号中科院光电所《光电进展》编辑部
邮政编码:610209
E-mail: oea@ioe.ac.cn
电话:028-85100579
网址: https://www.oejournal.org/oea
微信号:OE_Journal (光电期刊)