Opto-Electronic Advances
Search

2020, 3(8) Column

MORE

Opto-Electronic Advances 第3卷 第8期

Author Affiliations
Abstract
1 Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, Hawthorn 3122, Australia
2 Department of Physics, Royal Melbourne Institute of Technology, GPO Box 2476, Melbourne 3001, Australia
3 Melbourne Centre for Nanofabrication, Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC 3168, Australia
4 Tokyo Tech World Research Hub Initiative (WRHI), School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
Fresnel incoherent correlation holography (FINCH) is a self-interference based super-resolution three-dimensional imaging technique. FINCH in inline configuration requires an active phase modulator to record at least three phase-shifted camera shots to reconstruct objects without twin image and bias terms. In this study, FINCH is realized using a randomly multiplexed bifocal binary diffractive Fresnel zone lenses fabricated using electron beam lithography. The object space is calibrated by axially scanning a point object along the optical axis and recording the corresponding point spread holograms (PSHs). An object is mounted within the calibrated object space, and the object hologram was recorded under identical experimental conditions used for recording the PSHs. The image of the object at different depths was reconstructed by a cross-correlation between the object hologram and the PSHs. Application potential including bio-medical optics is discussed.
imaging holography correlation three-dimensional imaging diffractive optics 
Opto-Electronic Advances
2020, 3(8): 08200004
Author Affiliations
Abstract
1 Key Laboratory for Information Science of Electromagnetic Waves (MoE), Fudan University, Shanghai 200433, China
2 Photonics Labora-tory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
Visible-light communication (VLC) stands as a promising component of the future communication network by providing high-capacity, low-latency, and high-security wireless communication. Superluminescent diode (SLD) is proposed as a new light emitter in the VLC system due to its properties of droop-free emission, high optical power density, and low speckle-noise. In this paper, we analyze a VLC system based on SLD, demonstrating effective implementation of carrierless amplitude and phase modulation (CAP). We create a low-complexity memory-polynomial-aided neural network (MPANN) to replace the traditional finite impulse response (FIR) post-equalization filters of CAP, leading to significant mitigation of the linear and nonlinear distortion of the VLC channel. The MPANN shows a gain in Q factor of up to 2.7 dB higher than other equalizers, and more than four times lower complexity than a standard deep neural network (DNN), hence, the proposed MPANN opens a pathway for the next generation of robust and efficient neural network equalizers in VLC. We experimentally demonstrate a proof-of-concept 2.95-Gbit/s transmission using MPANN-aided CAP with 16-quadrature amplitude modulation (16-QAM) through a 30-cm channel based on the 442-nm blue SLD emitter.
superluminescent diode visible-light communication neural network 
Opto-Electronic Advances
2020, 3(8): 08200009
Wei Liu 1,2Dashan Dong 1,2Hong Yang 1,2,3Qihuang Gong 1,2,3Kebin Shi 1,2,3,*
Author Affiliations
Abstract
1 State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
3 Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, China
The rotation control of particles in optical tweezers is often subject to the spin or orbit angular momentum induced optical torque, which is susceptible to the mechanical and morphological properties of individual particle. Here we report on a robust and high-speed rotation control in optical tweezers by using a novel linear polarization synthesis based on optical heterodyne interference between two circularly polarized lights with opposite handedness. The synthesized linear polarization can be rotated in a hopping-free scheme at arbitrary speed determined electronically by the heterodyne frequency between two laser fields. The experimental demonstration of a trapped vaterite particle in water shows that the precisely controlled rotation frequency of 300 Hz can be achieved. The proposed method will find promising applications in optically driven micro-gears, fluidic pumps and rotational micro-rheology.
polarization modulation optical heterodyne optical tweezers optical rotation 
Opto-Electronic Advances
2020, 3(8): 08200022

公告

地址: 四川省成都市双流区光电大道一号中科院光电所《光电进展》编辑部
邮政编码:610209
E-mail: oea@ioe.ac.cn
电话:028-85100579
网址: https://www.oejournal.org/oea
微信号:OE_Journal (光电期刊)