Photonics Research
Search

2017, 5(4) Column

MORE

Photonics Research 第5卷 第4期

Author Affiliations
Abstract
1 Institute of Signal Processing and Transmission, Nanjing University of Posts and Telecommunications, Nanjing, China
2 Key Lab of Broadband Wireless Communication and Sensor Network Technology, Ministry of Education, Nanjing, China
It is shown that orbital angular momentum (OAM) is a promising new resource in future classical and quantum communications. However, the separation of OAM modes is still a big challenge. In this paper, we propose a simple and efficient separation method with a radial varying phase. In the method, specific radial varying phases are designed and modulated for different OAM modes. The resultant beam is focused to the spots with different horizontal and vertical positions after a convex lens, when the coordinate transformation, including two optical elements with coordinate transformation phase and correct phase, operates on the received beam. The horizontal position of the spot is determined by the vortex phases, and the vertical position of the spot is dependent on the radial varying phases. The simulation and experimental results show that the proposed method is feasible both for separation of two OAM modes and separation of three OAM modes. The proposed separation method is available in principle for any neighboring OAM modes because the radial varying phase is controlled. Additionally, no extra instruments are introduced, and there is no diffraction and narrowing process limitation for the separation.
Optical vortices Spatial discrimination Holographic optical elements 
Photonics Research
2017, 5(4): 04000267
Zhengyuan Bai 1,2,3Guiju Tao 4,6Yuanxin Li 1,3Jin He 5[ ... ]Long Zhang 1,*
Author Affiliations
Abstract
1 Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 School of Physics and the Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland
3 University of Chinese Academy of Sciences, Beijing 100039, China
4 Shanghai Research Institute of Petrochemical Technology, SINOPEC, Shanghai 201208, China
5 Institute of Chemistry, the Hebrew University of Jerusalem, Jerusalem 91904, Israel
6 e-mail: gjtao@siom.ac.cn
Two-dimensional (2D) periodical Au and indium tin oxide (ITO) nanocomposite arrays have been fabricated based on a self-assembled nanosphere lithography technique. A button-shaped Au nanoparticle was formed on each hollow hemisphere-shaped ITO shell. Importantly, the underlying formation mechanism during the thermal treatment has been thoroughly explored by comparing structures resulting from different deposition conditions in detail. Compared to the Au nanoparticle arrays without ITO shells, the Au/ITO nanocomposite arrays showed a stronger localized surface plasmon resonance effect and higher absorption in the near-infrared (NIR) region, benefiting from the free-electron interaction enhancement between Au and ITO. The nonlinear optical properties were investigated using a modified femtosecond intensity-scan system, and the results demonstrated Au/ITO nanocomposite arrays with a remarkable two-photon absorption saturation effect for femtosecond pulses at 1030 nm. The versatile NIR optical responses indicate the great potential of the elaborately prepared 2D periodical Au/ITO nanocomposite arrays in many applications such as solar cells, photocatalysis, and novel nano optoelectronic devices.
Nonlinear optics, materials Microstructure fabrication Nanomaterials 
Photonics Research
2017, 5(4): 04000280
Author Affiliations
Abstract
Department of Electronic and Information Engineering, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518000, China
Fiber-optic laser–ultrasound generation is being used in an increasing number of applications, including medical diagnosis, material characterization, and structural health monitoring. However, most currently used fiber-optic ultrasonic transducers allow effective ultrasound generation at only a single location, namely, at the fiber tip, although there have been a few limited proposals for achieving multipoint ultrasound generation along the length of a fiber. Here we present a novel fiber-optic ultrasound transducer that uses the core-offset splicing of fibers to effectively generate ultrasound at multiple locations along the fiber. The proposed laser–ultrasonic transducer can produce a balanced-strength signal between ultrasonic generation points by reasonably controlling the offsets of the fibers. The proposed transducer has other outstanding characteristics, including simple fabrication and low cost.
Fiber optics Nondestructive testing Ultrasound 
Photonics Research
2017, 5(4): 04000287
Author Affiliations
Abstract
1 Institute of Applied Physics of the Russian Academy of Sciences (IAP RAS), 46 Ulyanov Street, Nizhny Novgorod 603950, Russia
2 National University of Science and Technology “MISIS,” 4 Leninsky Prospekt, Moscow 119049, Russia
We report on the design and performance of a fiber laser system with adaptive acousto-optic macropulse control for a novel photocathode laser driver with 3D ellipsoidal pulse shaping. The laser system incorporates a three-stage fiber amplifier with an integrated acousto-optical modulator. A digital electronic control system with feedback combines the functions of the arbitrary micropulse selection and modulation resulting in macropulse envelope profiling. As a benefit, a narrow temporal transparency window of the modulator, comparable to a laser pulse repetition period, effectively improves temporal contrast. In experiments, we demonstrated rectangular laser pulse train profiling at the output of a three-cascade Yb-doped fiber amplifier.
Laser amplifiers Lasers, ytterbium Acousto-optical devices Modulators 
Photonics Research
2017, 5(4): 04000293
Author Affiliations
Abstract
Department of Electronic Engineering, Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
We demonstrate how a metal wire grating can work as a 45° polarization converter, a quarter-wave retarder, and a half-wave retarder over a broadband terahertz range when set up in total internal reflection geometry. Classical electromagnetic theory is applied to understand the mechanism, and equations to calculate the polarization state of reflected light are derived. We use a metal grating with a period of 20 μm and width of 10 μm on a fused silica surface: linearly polarized terahertz light incident from fused silica with a supercritical incident angle of 52° is totally reflected by the metal grating and air. The polarization of the terahertz light is rotated by 45°, 90°, and circularly polarized by simply rotating the wire grating. The performance is achromatic over the measured range of 0.1–0.7 THz and comparable to commercial visible light wave retarders.
Gratings Total internal reflection Optical devices Phase shift 
Photonics Research
2017, 5(4): 04000299
Author Affiliations
Abstract
1 Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
2 Data 61/Commonwealth Scientific and Industrial Research Organisation, Parkville, VIC 3052, Australia
3 School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
Changes in refractive index and the corresponding changes in the characteristics of an optical waveguide in enabling propagation of light are the basis for many modern silicon photonic devices. Optical properties of these active nanoscale waveguides are sensitive to the little changes in geometry, external injection/biasing, and doping profiles, and can be crucial in design and manufacturing processes. This paper brings the active silicon waveguide for complete characterization of various distinctive guiding parameters, including perturbation in real and imaginary refractive index, mode loss, group velocity dispersion, and bending loss, which can be instrumental in developing optimal design specifications for various application-centric active silicon waveguides.
Electro-optical devices Optical properties 
Photonics Research
2017, 5(4): 04000305
Author Affiliations
Abstract
1 LTCI, Télécom Paristech, Université Paris-Saclay, 46 rue Barrault, 75013 Paris, France
2 COPL, Université Laval, 2375 rue de la Terrasse, Québec, Québec G1V 06A, Canada
3 Center for High Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque, New Mexico 87106-4343, USA
The effects of gain compression on the modulation dynamics of an optically injected gain lever semiconductor laser are studied. Calculations reveal that the gain compression is not necessarily a drawback affecting the laser dynamics. With a practical injection strength, a high gain lever effect and a moderate compression value allow us to theoretically predict a modulation bandwidth four times higher than the free-running one without a gain lever, which is of paramount importance for the development of directly modulated broadband optical sources compatible with short-reach communication links.
Semiconductor lasers Modulation transfer function Lasers, injection-locked Nonlinear optics, integrated optics 
Photonics Research
2017, 5(4): 04000315
Feng-Min Cheng 1,2,3Zhi-Wei Jia 1,2,3Jin-Chuan Zhang 1,2,3,*Ning Zhuo 1,2,3[ ... ]Zhan-Guo Wang 1,2,3
Author Affiliations
Abstract
1 Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
2 Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083, China
3 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China
4 e-mail: fqliu@semi.ac.cn
We report an index-coupled distributed feedback quantum cascade laser by employing an equivalent phase shift (EPS) of quarter-wave integrated with a distributed Bragg reflector (DBR) at λ5.03 μm. The EPS is fabricated through extending one sampling period by 50% in the center of a sampled Bragg grating. The key EPS and DBR pattern are fabricated by conventional holographic exposure combined with the optical photolithography technology, which leads to improved flexibility, repeatability, and cost-effectiveness. Stable single-mode emission can be obtained by changing the injection current or heat sink temperature even under the condition of large driving pulse width.
Semiconductor lasers, quantum cascade Phase shift Lasers, distributed-feedback Bragg reflectors 
Photonics Research
2017, 5(4): 04000320
Author Affiliations
Abstract
1 State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
2 Key Laboratory for Laser Plasma (Ministry of Education), Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
3 Department of Physics, Jiangxi Normal University, Nanchang 330022, China
We experimentally demonstrate the nonlinear interaction between two chirped broadband single-photon-level coherent states. Each chirped coherent state is generated in independent fiber Bragg gratings. They are simultaneously coupled into a high-efficiency nonlinear waveguide, where they are converted into a narrowband single-photon state with a new frequency by the process of sum-frequency generation (SFG). A higher SFG efficiency of 1.06×10 7 is realized, and this efficiency may achieve heralding entanglement at a distance. This also made it possible to realize long-distance quantum communication, such as device-independent quantum key distribution, by directly using broadband single photons without filtering.
Nonlinear optics, parametric processes Harmonic generation and mixing Upconversion 
Photonics Research
2017, 5(4): 04000324
Author Affiliations
Abstract
1 W.M. Keck Center for Adaptive Optical Microscopy, Baskin Engineering, University of California, Santa Cruz, California 95064, USA
2 Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, USA
3 Current address: Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, USA
A woofer–tweeter adaptive optical structured illumination microscope (AOSIM) is presented. By combining a low-spatial-frequency large-stroke deformable mirror (woofer) with a high-spatial-frequency low-stroke deformable mirror (tweeter), we are able to remove both large-amplitude and high-order aberrations. In addition, using the structured illumination method, as compared to widefield microscopy, the AOSIM can accomplish high-resolution imaging and possesses better sectioning capability. The AOSIM was tested by correcting a large aberration from a trial lens in the conjugate plane of the microscope objective aperture. The experimental results show that the AOSIM has a point spread function with an FWHM that is 140 nm wide (using a water immersion objective lens with NA=1.1) after correcting a large aberration (5.9 μm peak-to-valley wavefront error with 2.05 μm RMS aberration). After structured light illumination is applied, the results show that we are able to resolve two beads that are separated by 145 nm, 1.62× below the diffraction limit of 235 nm. Furthermore, we demonstrate the application of the AOSIM in the field of bioimaging. The sample under investigation was a green-fluorescent-protein-labeled Drosophila embryo. The aberrations from the refractive index mismatch between the microscope objective, the immersion fluid, the cover slip, and the sample itself are well corrected. Using AOSIM we were able to increase the SNR for our Drosophila embryo sample by 5×.
Active or adaptive optics Microscopy Superresolution 
Photonics Research
2017, 5(4): 04000329
Author Affiliations
Abstract
State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
A novel scheme for the design of an ultra-compact and high-performance optical switch is proposed and investigated numerically. Based on a standard silicon (Si) photonic stripe waveguide, a section of hyperbolic metamaterials (HMM) consisting of 20-pair alternating vanadium dioxide (VO2)/Si thin layers is inserted to realize the switching of fundamental TE mode propagation. Finite-element-method simulation results show that, with the help of an HMM with a size of 400 nm×220 nm×200 nm (width×height×length), the ON/OFF switching for fundamental TE mode propagation in an Si waveguide can be characterized by modulation depth (MD) of 5.6 dB and insertion loss (IL) of 1.25 dB. It also allows for a relatively wide operating bandwidth of 215 nm maintaining MD>5 dB and IL<1.25 dB. Furthermore, we discuss that the tungsten-doped VO2 layers could be useful for reducing metal-insulator-transition temperature and thus improving switching performance. In general, our findings may provide some useful ideas for optical switch design and application in an on-chip all-optical communication system with a demanding integration level.
Optical switching devices Integrated optics devices Metamaterials 
Photonics Research
2017, 5(4): 04000335
Author Affiliations
Abstract
Department of Engineering, The University of Massachusetts at Boston, 100 Morrissey Boulevard, Boston, Massachusetts 02125, USA (Richard.Soref@umb.edu)
A theoretical design is presented for a 1×M wavelength-selective switch (WSS) that routes any one of N incoming wavelength signals to any one of M output ports. This planar on-chip device comprises a 1×N demultiplexer, a group of N switching “trees” actuated by electro-optical or thermo-optical means, and an M-fold set of N×1 multiplexers. Trees utilize 1×2 switches. The WSS insertion loss is proportional to [log2 (M+N+1)]. Along with cross talk from trees, cross talk is present at each cross-illuminated waveguide intersection within the WSS, and there are at most N 1 such crossings per path. These loss and cross talk properties will likely place a practical limit of N=M=16 upon the WSS size. By constraining the 1×2 switching energy to 1 fJ/bit, we find that resonant, narrowband 1×2 switches are required. The 1×2Multiplexing Optical switching devices Subsystem integration and techniques 
Photonics Research
2017, 5(4): 04000340
Author Affiliations
Abstract
Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, Manitoba R3T 5V6, Canada
We report on the performance of a continuous-wave Nd:GdVO4 laser in-band diode-pumped at 912 nm with high output power and excellent beam quality. The laser produced an output power of 19.8 W at 1063 nm with an optical efficiency of 59.3% and slope efficiency of 62.7%. The laser threshold was 2.04 W of the absorbed pump power, and laser output beam quality was 1.2 in the horizontal and vertical directions. The strength of thermal lensing at full output power (33.4 W of absorbed power) was measured to be an average of 8.6 diopters. It is shown that thermal lensing is reduced by a factor of 2 with respect to the Nd:YVO4 lasers, thus opening a way for further output-power scaling.
Lasers, diode-pumped Lasers, neodymium Lasers, solid-state 
Photonics Research
2017, 5(4): 04000346
Jiangming Xu 1,2,3Long Huang 1Man Jiang 1Jun Ye 1[ ... ]Pu Zhou 1,2,*
Author Affiliations
Abstract
1 College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073, China
2 Hunan Provincial Collaborative Innovation Center of High Power Fiber Laser, Changsha 410073, China
3 e-mail: jmxu1988@163.com
In this paper, we propose and experimentally investigate a linearly polarized narrow-linewidth random fiber laser (RFL) operating at 1080 nm and boost the output power to kilowatt level with near-diffraction-limited beam quality using a master oscillation power amplifier. The RFL based on a half-opened cavity, which is composed of a linearly polarized narrow-linewidth fiber Bragg grating and a 500 m piece of polarization-maintained Ge-doped fiber, generates a 0.71 W seed laser with an 88 pm full width at half-maximum (FWHM) linewidth and a 22.5 dB polarization extinction ratio (PER) for power scaling. A two-stage fiber amplifier enhances the seed laser to the maximal 1.01 kW with a PER value of 17 dB and a beam quality of Mx2=1.15 and My2=1.13. No stimulated Brillouin scattering effect is observed at the ultimate power level, and the FWHM linewidth of the amplified random laser broadens linearly as a function of the output power with a coefficient of about 0.1237 pm/W. To the best of our knowledge, this is the first demonstration of a linearly polarized narrow-linewidth RFL with even kilowatt-level near-diffraction-limited output, and further performance scaling is ongoing.
Lasers, distributed-feedback Fibers, polarization-maintaining Linewidth Fiber optics amplifiers and oscillators 
Photonics Research
2017, 5(4): 04000350
Author Affiliations
Abstract
Key Laboratory of Space Active Opto-Electronics Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
We report the investigation on the performance of an amplification assisted difference frequency generation (AA-DFG) system driven by pulsed pump and continuous-wave primary signal lasers. A monolithic tandem lithium niobate superlattice was employed as the nonlinear crystal with a uniform grating section for the DFG process, followed by a chirp section for the optical parametric amplification process. The impacts of pump pulse shape, primary signal power, input beam diameter, and crystal structure on the pump-to-idler conversion efficiency of the AA-DFG system were comprehensively studied by numerically solving the coupled wave equations. It is concluded that square pump pulse and high primary signal power are beneficial to high pump-to-idler conversion efficiency. In addition, tighter input beam focus and smaller DFG length proportion could redeem the reduction in conversion efficiency resulting from wider acceptance bandwidths for the input lasers. We believe that such systems combining the merits of high stability inherited from cavity-free configuration and high efficiency attributed from the cascaded nonlinear conversion should be of great interest to a wide community, especially when the pulse shaping technique is incorporated.
Parametric oscillators and amplifiers Nonlinear optics, parametric processes Infrared and far-infrared lasers 
Photonics Research
2017, 5(4): 04000355
Author Affiliations
Abstract
Light-Matter Interactions Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
Tapered fibers with diameters ranging from 1 to 4 μm are widely used to excite the whispering-gallery (WG) modes of microcavities. Typically, the transmission spectrum of a WG cavity coupled to a waveguide around a resonance assumes a Lorentzian dip morphology due to resonant absorption of the light within the cavity. In this paper, we demonstrate that the transmission spectra of a WG cavity coupled with an ultrathin fiber (500–700 nm) may exhibit both Lorentzian dips and peaks, depending on the gap between the fiber and the microcavity. By considering the large scattering loss of off-resonant light from the fiber within the coupling region, this phenomenon can be attributed to partially resonant light bypassing the lossy scattering region via WG modes, allowing it to be coupled both to and from the cavity, then manifesting as Lorentzian peaks within the transmission spectra. This implies the system could be implemented within a bandpass filter framework.
Resonators Micro-optical devices Microstructured fibers 
Photonics Research
2017, 5(4): 04000362
Author Affiliations
Abstract
1 Key Laboratory for Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Department of Physics, Henan Normal University, Xinxiang 453007, China
4 Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
We study optomechanically induced transparency in a spinning microresonator. We find that in the presence of rotation-induced Sagnac frequency shift, both the transmission rate and the group delay of the signal are strongly affected, leading to a Fano-like spectrum of transparency. In particular, tuning the rotary speed leads to the emergence of nonreciprocal optical sidebands. This indicates a promising new way to control hybrid light–sound devices with spinning resonators.
Coherent optical effects Optomechanics 
Photonics Research
2017, 5(4): 04000367
Author Affiliations
Abstract
College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
We present an experimental demonstration of ghost imaging of reflective objects with different surface roughness. The influence of the surface roughness, the transverse size of the test detector, and the reflective angle on the signal-to-noise ratio (SNR) is analyzed by measuring the second-order correlation of the light field based on classical statistical optics. It is shown that the SNR decreases with an increment of the surface roughness and the detector’s transverse size or a decrease of the reflective angle. Additionally, the comparative studies between the rough object and the smooth one under the same conditions are also discussed.
Image processing Coherence imaging Statistical optics Roughness 
Photonics Research
2017, 5(4): 04000372
Author Affiliations
Abstract
1 Institute of Electromagnetics and Acoustics, and Department of Electronic Science, Xiamen University, Xiamen 361005, China
2 Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, USA
Multiple resonant excitations of surface plasmons in a graphene stratified slab are realized by Otto configuration at terahertz frequencies. The proposed graphene stratified slab consists of alternating dielectric layers and graphene sheets, and is sandwiched between a prism and another semi-infinite medium. Optical response and field distribution are determined by the transfer matrix method with the surface current density boundary condition. Multiple resonant excitations appear on the angular reflection spectrum, and are analyzed theoretically via the phase-matching condition. Furthermore, the effects of the system parameters are investigated. Among them, the Fermi levels can tune the corresponding resonances independently. The proposed concept can be engineered for promising applications, including angular selective or multiplex filters, multiple channel sensors, and directional delivery of energy.
Surface plasmons Multilayers Prisms Filters, absorption Multiplexing 
Photonics Research
2017, 5(4): 04000377