首页 > 期刊 > 栏目列表 > 栏目 (“超分辨成像”专题)

摘要

众所周知,光学成像技术具有成像速度快、可实现无损观察等优点,在人类探索和发现未知世界奥秘的活动中一直扮演着重要的角色。随着现代科学的发展,对微观结构的研究迫切希望能够从分子水平揭示生命过程和材料性能的物理本质,但受限于光的衍射特性,光学成像系统的空间分辨率不可能无限小,存在瑞利\|阿贝物理极限。传统光学显微镜的空间分辨率最高只能达到波长的1/2,故而对低于200 nm的细节信息无能为力。

PDF全文 光学学报 | 2017,37(03):0318000
分享:
0 194 865

摘要

超分辨显微成像技术使细胞生物学进入到了一个全新的时代, 但如何进一步提高超分辨显微成像技术的时空分辨率仍是光学领域需要解决的重要问题。目前为止几乎所有的超分辨显微成像技术都依赖于荧光探针, 光调控荧光蛋白作为一类特殊的荧光探针, 可以被不同波长的激发光所激活, 产生随机或者特殊结构样式的信号。利用这些信息, 透镜系统的空间分辨率得到了提高。通过总结光调控荧光蛋白的各类参数, 从荧光探针入手

PDF全文 光学学报 | 2017,37(03):0318008
分享:
1 82 1121

摘要

光学显微成像技术在生命科学、生物医学、临床医学诊断和材料科学等领域有着非常广泛的应用。但由于光学衍射极限的存在, 传统光学显微镜无法观察到纳米尺度的物质及生命活动, 极大地限制科学研究和医学的发展。近年来, 随着突破光学衍射极限的超分辨成像技术的不断发展, 显微成像分辨率得到不同程度的提高。目前在基于不同原理的各种超高分辨率显微镜中, 随机光学重构显微镜 (STORM) 分辨率最高, 可达几十纳米,

PDF全文 光学学报 | 2017,37(03):0318005
分享:
0 431 1252

摘要

在过去的20年, 激光扫描共聚焦显微镜一直是在细胞水平和亚细胞水平上观察生命活动的标准工具, 但是基于针孔的共聚焦显微镜的光学层切是以牺牲焦平面以外的被激发的荧光色团和较大的光毒性为代价的。作为一种新型的荧光显微镜, 光片荧光显微镜采用侧向照明的方式, 对样品直接进行面成像。相对于点扫描的成像方式, 光片显微镜成像速度远远高于激光扫描共聚焦显微镜, 使得研究一些高速的精细生命活动过程成为了可

PDF全文 光学学报 | 2017,37(03):0318007
分享:
0 110 1280

摘要

受激发射损耗显微技术(STED)作为一种远场超分辨显微成像技术, 具有几十纳米甚至几纳米的空间分辨率, 是细胞生物学等研究领域的重要成像工具。圆环形空心损耗光在物镜焦点附近的光场强度分布对STED空间分辨率起决定性作用。在高数值孔径物镜聚焦下, 光场的偏振态会对聚焦光场的强度分布产生显著的影响, 此外, 显微系统的轴外像差会严重破坏空心损耗光焦斑的中心对称性。基于矢量衍射理论, 理论模拟了在高数值孔

PDF全文 光学学报 | 2017,37(03):0318009
分享:
0 58 901

摘要

近年来, 随着各种新型荧光探针的出现和成像方法的改进, 远场光学成像的分辨率已经突破了衍射极限的限制。基于结构光照明的荧光显微技术凭借成像速度快、光毒性弱等优点, 已成为目前主流的超分辨成像技术之一。实现结构光照明超分辨显微成像的关键在于照明光场的精准调控和后期的超分辨图像重建算法, 否则将会在重建的超分辨图像中产生不可预估的伪影, 混淆对观测结构真实形态的判断。详细对比了几种典型的结构

PDF全文 光学学报 | 2017,37(03):0318001
分享:
0 754 1431

摘要

结构光照明荧光显微术(SIM)是一种可突破阿贝衍射极限的宽场显微成像技术, 因其非侵入、成像速度快及光损伤小等优点在生物医学研究中具有广泛的应用前景。从结构光照明显微成像系统基本原理出发, 分析了超分辨图像重构算法原理、重构图像中伪影来源及优化方法; 结合研制的线性/非线性结构光照明显微镜, 详细讨论了基于激光干涉的SIM成像系统光机结构。重点讨论了系统的同步时序设计和光路中的几个关键技术问题

PDF全文 光学学报 | 2017,37(03):0318003
分享:
0 484 1308

摘要

近几年, 可逆光激活荧光蛋白的研制越来越受到人们的重视, 这类荧光蛋白极大地促进了活细胞超高分辨显微成像技术的发展及应用。可逆光激活荧光蛋白可被不同波长的光多次可逆地进行调制, 因而被广泛地应用于高密度数据的光存储、光致变色荧光共振能量转移的测量以及基于可逆饱和线性荧光跃迁原理的超高分辨率显微成像中。从研制这类荧光蛋白所涉及的关键氨基酸位点出发, 本文综述了近几年可逆光激活绿色荧光蛋白

PDF全文 光学学报 | 2017,37(03):0318002
分享:
0 92 786

摘要

多色成像作为超分辨成像技术的重要延伸, 极大地增强了人们研究亚细胞结构定位与交互关系的能力, 从而有助于研究者深入理解细胞内复杂的生命现象与过程。基于单分子定位超分辨显微成像术(SMLM)工作原理的特殊性, 已实现了激发依赖、激活依赖、分光依赖等数种有特点的多色成像方法。介绍6种主要的多色单分子定位超分辨显微成像技术, 从分色能力、光谱窜扰、数据采集效率等角度分析了各方法的优缺点, 并讨论了与

PDF全文 光学学报 | 2017,37(03):0318010
分享:
0 79 1229

摘要

单幅图像超分辨率(SR)复原是一个病态逆问题, 需要利用图像的先验知识进行正则化约束。提出了一种同时考虑外在样例和内在自相似性的单幅图像SR复原算法, 其中外在先验知识是通过卷积神经网络从外在低分辨率-高分辨率图像对学习得到的, 而内在先验约束由聚类和低秩近似实现。实验结果表明, 本方法在复原效果和稳健性方面优于已有方法。

PDF全文 光学学报 | 2017,37(03):0318006
分享:
0 116 736
首页上一页12下一页尾页