红外与激光工程, 2020, 49 (S2): 20200232, 网络出版: 2021-02-05  

基于ICESat-GLAS波形与LPA数据估测森林生物量

Estimation of AGB based on ICESat-GLAS waveform and LPA data
作者单位
1 东北林业大学 工程技术学院,黑龙江 哈尔滨 150040
2 北京空间机电研究所,北京 100094
3 先进光学遥感技术北京市重点实验室,北京 100094
摘要
针对星载激光雷达波形数据估测森林生物量精度较低的问题,研究以冰云陆地高程卫星(Ice,Cloud,and land Elevation Satellite,ICESat)/地球科学激光测高系统(Geoscience Laser Altimeter System,GLAS)回波波形为例,通过修正GLAS回波波形背景噪声阈值,识别GLAS冠层回波波形,设定冠层回波波形起止点位置,提出冠层回波能量值参数Eca,并基于激光断面阵列(Laser Profile Array,LPA)数据校正E_ca,得到校正后的冠层回波波形能量值参数ECca,进而估测森林生物量。研究结果显示,GLAS冠层回波波形能量值参数Eca经LPA数据校正前后森林生物量估测精度R2分别为0.87和0.89,RMSE分别为17.28 t/ha和15.76 t/ha。研究结果表明,所提出的冠层回波能量值参数能够有效估测森林生物量,且冠层回波波形能量值参数Eca经LPA数据修正后能够提高森林生物量估测精度。
Abstract
In view of the low accuracy of the estimation of forest biomass by spaceborne lidar waveform data, Ice, Cloud, and land Elevation Satellite (ICESat)/Geoscience Laser Altimeter System, GLAS) echo waveform was used as an example, by modifying the background noise threshold of the GLAS echo waveform, identifying the GLAS canopy echo waveform, setting the position of the start and end points of the canopy echo waveform, the canopy echo energy parameter Eca, and based on the Laser Profile Array(LPA) data was corrected to Eca to obtain the corrected canopy echo waveform energy value parameter ECca, and then the aboveground biomass(AGB) was estimated. The research results show that the energy accuracy parameter Eca of the GLAS canopy echo waveform before and after correction by LPA data was 0.87 and 0.89, respectively, and the RMSE was 17.28 t/ha and 15.76 t/ha, respectively. The research results show that the canopy echo energy value parameter proposed in this paper can effectively estimate forest biomass, and the canopy echo waveform energy value parameter Eca can be improved by LPA data to improve the estimation accuracy of forest biomass.
参考文献

[1] 陈海波. 我国发布首幅2018年全球30米分辨率森林覆盖图[EB/OL].http://www.mnr.gov.cn/dt/ywbb/201911/t20191121_2482563. html.2019.11.21.

[2] Sheng C G, Yue S Z. The assessment of the forest biomass and productivity in heilongjiang forest industry region[J]. Applied Mechanics & Materials, 2012, 1935(391): 1207-1211.

[3] Field C B, Raupach M R. The Global Carbon Cycle: Integrating Humans, Climate, and the Batural World[M]. Chicago, Island Press, 2004.

[4] Wang Siheng, Huang Changping, Zhang Lifu, et al. Design ment and assessment of far-red solar-induced chlorophyll fluorescence vetrieval method for the therrestrial ecosystem carbon inventory satellite[J]. Remote Sensing Technology and Application, 2019, 34(3): 476-487. (in Chinese)

[5] Singh U N, Sugimoto N, Jayaraman A, et al. Construction and first atmospheric observations of a high spectral resolution lidar system in Argentina in the frame of a trinational Japanese-Argentinean-Chilean collaboration[C]//Lidar Remote Sensing for Environmental Monitoring XV, 2016: 98791M.

[6] Kinyanjui M J, Kigomo N J, Wamloui K M, et al. Comparing tree heights among montane forest blocks of kenya using LiDAR data from GLAS[J]. Open Journal of Forestry, 2015, 5(1): 80-89.

[7] Yu Y, Fan W Y, Li M Z, et al. Estimation of forest tree heights and biomass from GLAS data[J]. Scientia Silvae Sinicae, 2010, 46(9): 84-87. (in Chinese)

[8] Biswas S, Anand A. Developing regional vegetation height products from ICESat/GLAS datasets[C]//AGU Fall Meeting Abstracts, 2013.

[9] Cao C X, Ni X L, Wang X J, et al. Allometric scaling theory-based maximum forest tree height and biomass estimation in the Three Gorges reservoir region using multi-source remote-sensing data[J]. International Journal of Remote Sensing, 2016, 37(5): 1210-1222.

[10] Wang R, Xing Y Q, You H T. Comparison of ICESat-GLAS-based estimation models of maximum tree height under slope terrain condition[J]. Journal of Northwest Forestry University, 2019, 34(3): 154-160. (in Chinese)

[11] Wang C, Tang F, Li L, et al. Wavelet analysis for ICESat/GLAS waveform decomposition and its application in average tree height estimation[J]. Geoscience and Remote Sensing Letters, IEEE, 2013, 10(1): 115-119.

[12] Lefsky M A. A global forest canopy height map from the moderate resolution imaging spectroradiometer and the geoscience laser altimeter system[J]. Geophysical Research Letters, 2010, 37(15): 78-82.

[13] Li Guoyuan, Tang Xinming, Fan Wenfeng, et al. On-orbit geometric calibration of satellite laser altimeter using ground-based IR detectors[J]. Infrared and Laser Engineering, 2017, 46(11): 1117004. (in Chinese)

[14] Zhang Wenhao, Li Song, Zhang Zhiyu, et al. Using waveform matching to precisely locate footprints of a satellite laser altimeter[J]. Infrared and Laser Engineering, 2018, 47(11): 1117007. (in Chinese)

[15] Li L, Xing Y. Study on forest type classification based on ICESat-GLAS lidar data[C]//Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC), 2011 2nd International Conference on. IEEE, 2011: 3379-3382.

[16] Zhang J, De Gier A, Xing Y, et al. Full waveform-based analysis for forest type information derivation from large footprint spaceborne lidar data[J]. Photogrammetric Engineering and Remote Sensing, 2011, 77(3): 281-290.

[17] Baghdadi Nicolas, Le Maire Guerric, Fayad Ibrahim, et al. Testing different methods of forest height and aboveground biomass estimations from ICESat/GLAS data in eucalyptus plantations in brazil[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2013, 7(1): 290-299.

[18] Xu Xiaoqiang, Wang Dehua. Research on the method of establishing forest biomass model using the remote sensing parameters[J]. Mine Surveying, 2019, 47(2): 33-37.

[19] Ballhorn Uwe, Jubanski Juilson, Siegert Florian, et al. ICESat/GLAS data as a measurement tool for peatland topography and peat swamp forest biomass in Kalimantan,Indonesia[J]. Remote Sensing, 2011, 3: 1957-1982.

[20] Xi X H, Han T T, Wang C, et al. Forest above ground biomass inversion by fusing GLAS with optical remote sensing data[J]. ISPRS International Journal of Geo-Information, 2016, 5(4): 45.

[21] Hayashi M, Saigusa N, Yamagata Y, et al. Regional forest biomass estimation using ICESat/GLAS spaceborne LiDAR over Borneo[J]. Carbon Management, 2015, 6(1-2): 19-33.

[22] Dogukan Dogu Yavasl. Estimation of above ground forest biomass at Mugla using ICESat/GLAS and landsat data[J].Remote Sensing Applications: Society and Environment, 2016, 4: 211-218.

[23] Yu Ying, Fan Wenyi, Li Mingze, et al. Estimation of forest tree heights and biomass from GLAS data[J]. Scientia Silvae Sinicae, 2010, 46(9): 84-87. (in Chinese)

[24] Zhou H, Li S. Waveform aimulator of return signal for laser altimeter [J]. Chinese Journal of Lasers, 2006, 33(10): 1402-1406. (in Chinese)

[25] Yuan Xiaoqi, Li Guoyuan, Tang Xinming, et al. Centroid automatic extraction of spaceborne laser spot image[J]. Acta Geodaetica et Cortographica Sinica, 2018, 47(2): 135-141. (in Chinese)

[26] Craig Mahoney, Natascha Kljun, Sietse Los, et al. Slope estimation from ICESat/GLAS[J]. Remote Sensing, 2014, 6(10): 10051-10069.

[27] Pang Y, Lefsky M, Sun G, et al. Impact of footprint diameter and off-nadir pointing on the precision of canopy height estimates from spaceborne lidar[J]. Remote Sensing of Environment, 2011, 115(11): 2798-2809.

蔡龙涛, 邢艳秋, 岳春宇, 黄佳鹏, 崔阳. 基于ICESat-GLAS波形与LPA数据估测森林生物量[J]. 红外与激光工程, 2020, 49(S2): 20200232. Cai Longtao, Xing Yanqiu, Yue Chunyu, Huang Jiapeng, Cui Yang. Estimation of AGB based on ICESat-GLAS waveform and LPA data[J]. Infrared and Laser Engineering, 2020, 49(S2): 20200232.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!