科技动态

上海交大研究成果为人工合成超金刚石硬度的纳米材料提供新思路

发布:juli阅读:1349时间:2014-10-18 15:15:52
      近日,上海交通大学物理与天文系孙弘教授的研究小组在国际著名杂志《自然》的子刊《自然通讯》上发表了题为“Large indentation strain stiffening in nanotwinned cubic boron nitride”的论文【Nature Communications 5, 4965 (2014)】,为人工合成超金刚石硬度的纳米材料提供了新思路。

     金刚石是世界上已知最坚硬的材料,其实验Vickers硬度达到约100GPa。然而,去年国内研究小组在Nature杂志发表文章,报道新合成了比金刚石更坚硬的纳米结构材料。这种新材料的实验Vickers硬度达到了108GPa。该材料是在普通的立方硼氮体材料中引入相距为几纳米的孪晶面而形成的纳米孪晶立方硼氮(nt-cBN),其实验维氏硬度比单晶立方硼氮的实验维氏硬度(60GPa左右)高了近一倍。人们一直都认为,材料中的孪晶面类似于一般的晶界面,能阻碍位错等缺陷的运动,从而增强材料的强度或硬度(Hall-Petch效应)。但当晶界面之间的间距小于某临界值(十至几十纳米),晶界面本身的运动会造成材料强度或硬度的减弱(反常Hall-Petch效应)。而nt-cBN的孪晶界面间距远小于临界距离,不但没有出现反常Hall-Petch效应,nt-cBN的硬度反而成倍增强,这一实验结果一度令国内外同行十分困惑,并产生极大兴趣。人们开始研究间距极小孪晶面对材料强度影响的物理机理。

       材料有着各种不同的晶面与方向,沿着不同的方向具有不同抗形变能力,而材料的硬度遵循着木桶原理,即抗形变能力最低的方向,往往决定着材料的硬度。孙弘研究小组长期从事超硬材料的第一性原理计算研究,利用第一性原理计算方法建立了一套精确预测材料维氏强度的计算软件。该软件能很好地解释了金刚石、立方硼氮、FeB4、CrB4,以及BC2N等材料的实验维氏硬度。根据长期的研究,他们发现单晶立方硼氮决定材料硬度的最弱方向强度为62Ga,而其相反方向则是材料的最强方向,其强度为130GPa。在此基础上,他们的深入研究表明,由于孪晶面的能量比单晶结构能量略高,当引入了孪晶面,导致原子键形变往往会累积到孪晶面附近,随着形变增大最终使得孪晶面上的原子键重新组合成新的原子键,使得材料中原来的弱键方向转化为强键方向,最终出现nt-cBN材料中原来弱键方向的强度都达到了130GPa,从而大幅提高了材料的强度或硬度。这种强度增强的效应非常类似橡皮筋的拉伸过程,刚开始拉伸时橡皮筋很软,随着拉伸形变增大,橡皮筋会变得越来越强(strain stiffening效应)。下图分别给出了孪晶面上原子键的重组过程和维氏强度随材料切向形变的增强。
 
 
nt-cBN孪晶面上原子键在维氏刻痕切向形变下的重组过程
 

 
nt-cBN在拉伸、单纯切变和维氏刻痕切变过程中材料强度的变化
 
      这一机制,孙弘研究小组的计算结果很好地从原子分子的微观尺度上解释了nt-cBN材料硬度比金刚石高的物理本质,解决了反常Hall-Petch效应的困惑。该研究受到国家自然科学基金的资助。


     来源:上海交大
> 免责声明
网站内容来源于互联网、原创,由网络编辑负责审查,目的在于传递信息,提供专业服务,不代表本网站及新媒体平台赞同其观点和对其真实性负责。如对文、图等版权问题存在异议的,请于20个工作日内与我们取得联系,我们将协调给予处理(按照法规支付稿费或删除),联系方式:021-69918579。网站及新媒体平台将加强监控与审核,一旦发现违反规定的内容,按国家法规处理,处理时间不超过24小时。 最终解释权归《中国激光》杂志社所有。

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!