检索

中国激光
激光与光电子学进展
Chinese Optics Letters
光学学报
光子学报
应用激光
应用光学
强激光与粒子束
量子光学学报
激光杂志
激光与红外
激光生物学报
激光技术
红外与激光工程
光学与光电技术
光学 精密工程
光学技术
光散射学报
光谱学与光谱分析
光电子技术
光电工程
发光学报
半导体光电
红外与毫米波学报
量子电子学报
原子与分子物理学报
Chinese Journal of Lasers B
中国激光医学杂志
强激光技术进展
大气与环境光学学报
高功率激光及等离子体物理研究论文集(专题)
现代科学仪器
光学仪器
光电子.激光
液晶与显示
红外
红外技术
光通信研究
半导体光子学与技术
High Power Laser Science and Engineering
Frontiers of Optoelectronics
Photonics Research
太赫兹科学与电子信息学报
Matter and Radiation at Extremes
Advanced Photonics
Opto-Electronic Advances
Journal of Innovative Optical Health Sciences
光通信技术
International Journal of Extreme Manufacturing
人工晶体学报
无机材料学报
Journal of Semiconductors

Hi,您目前在 全部期刊 期刊中, 论文搜索关键字 唐云祁 ,共找到 5 个内容。
选择下列全部论文 将 选定结果
Early Posting
摘要
根据现场遗留鞋印推断出作案人所穿鞋型,再到周围监控视频中搜索嫌疑鞋型已成为公安机关侦破案件的重要技战法。该技战法完全依赖人工筛查,受主观影响大,易造成漏检等问题。针对这一问题,本文提出一种基于注意力机制的鞋型识别算法,实现对监控视频中的行人所穿鞋型的自动识别。首先贴近公安刑侦实战建立样本容量为300的多背景监控鞋型数据集,进而提出一种注意力机制模型,用于增强ResNet50网络对鞋子重要特征的提取能力。实验比对了选取不同特征层的输出作为鞋子特征及不同卷积特征聚合方法对识别精度的影响。为增强模型的泛化能力,在损失函数中加入Label Smoothing。为评估算法性能,在构建的多背景数据集上对算法进行了测试,实验结果表明,本文提出的方法最终Rank-1、mAP精度分别达到74.32%和56.97%。
激光与光电子学进展
2022, 59(02): 4
图像处理
摘要
基于鞋样的视频追踪技术是公安机关刑事侦查的一种常用技战法,在公安实战中起到巨大的作用,然而该项技术大量依赖于人工筛选,工作量大且效率低,容易出现漏检的状况。鉴于此,提出一种基于SSD(Single Shot MultiBox Detector)模型的鞋子自动检测算法,实现对行人鞋子的自动检测与定位。首先对SSD模型的结构和先验框参数进行设计,使其符合鞋子检测的实际应用。然后采用调节网络参数的方法提高网络的检测性能和稳定性,完善适用于鞋子检测的网络模型和方法,最终得到准确且高效的单类别鞋子检测网络。最后在课题组前期构建的鞋样本数据库中进行性能评价。实验结果表明,所提算法的平均精度达到0.891。
激光与光电子学进展
2021, 58(6): 0610009
图像处理
摘要
刑事案件现场图作为刑事案件现勘记录的重要组成部分,在法庭科学领域中发挥着重要作用,然而在公安实战中,现场图绘制不规范的情况仍然时有发生。基于此,提出一种基于卷积神经网络的现场图自动分类方法,实现对全国公安机关现场勘验信息系统(简称为现勘系统)中现场图的自动分类核查。首先,利用现勘系统中现场图构建刑事案件现场图数据集,包括64098幅现场图和作为负类的27162张现场照片;然后,在AlexNet的基础上引入Inception结构,提出适用于现场图分类问题的卷积神经网络结构XCTNet;最后,多维度展现XCTNet的性能,并提取出分类错误的图像。实验结果表明:XCTNet在参数量仅为AlexNet的10%的条件下,在测试集上的准确度达到了98.65%,相比较AlexNet提升了3.78个百分点,但对自绘方位示意图的识别精度仍需要进一步提高。
激光与光电子学进展
2020, 57(4): 041009
机器视觉
摘要
为解决基于可穿戴传感器的步态事件检测技术对个体配合程度依赖性大、能耗高、应用条件苛刻等问题,提出一种基于机器视觉的足跟着地事件检测算法,可以在不需要参与者合作的情况下,利用普通摄像机实现对足跟着地事件的精确检测。提出一种新颖的特征,即连续轮廓帧差图(CSD-maps)来表达步态模式。一个连续轮廓帧差图可以将视频帧中行人连续的轮廓二值图编码到一张特征图中,使其蕴含丰富的步态时空信息。不同数量的行人连续轮廓帧差会产生不同的连续轮廓帧差图。利用卷积神经网络对连续轮廓帧差图进行特征提取和足跟着地事件分类。在公开数据库上,对124名受试者在5个视角下不同穿着状态的视频数据进行训练和测试,实验结果表明,该方法具有良好的检测精度,识别准确率达93%以上。
激光与光电子学进展
2019, 56(21): 211503
机器视觉
杨孟京  唐云祁  姜晓佳  
收起
摘要
“监控+鞋印”是目前公安机关刑事侦查的重要技战法,其基本原理是依据犯罪现场鞋印推断嫌疑人所穿鞋型,然后到周边监控视频中检索嫌疑鞋型。针对“监控+鞋印”技战法自动化程度低下的问题,提出一种基于卷积神经网络的鞋型识别方法,实现对嫌疑鞋型的自动识别。根据鞋型识别独有特点,在DeepID的基础上设计卷积神经网络框架,并构建鞋型样本数据库(50双鞋型样本,共计160231幅图像)。运用Caffe框架结合不同网络模型对鞋型图像数据进行训练和测试,实验设计的初始网络结构由两层卷积、两层池化、两层全连接组成。实验比对了不同的第一层全连接层输出元素数目对网络性能与训练效率的影响,又在不改变输出特征图大小的情况下比对了不同网络深度的实验结果,在优化模型的基础上引用重叠池化得到实验最优网络模型。实验结果表明,卷积神经网络对于鞋型有很好的识别效果,识别精度值最高达96.06%,为鞋型识别提供了一种新的途径。
激光与光电子学进展
2019, 56(19): 191505
1
00 11