检索

中国激光
激光与光电子学进展
Chinese Optics Letters
光学学报
光子学报
应用激光
应用光学
强激光与粒子束
量子光学学报
激光杂志
激光与红外
激光生物学报
激光技术
红外与激光工程
光学与光电技术
光学 精密工程
光学技术
光散射学报
光谱学与光谱分析
光电子技术
光电工程
发光学报
半导体光电
红外与毫米波学报
量子电子学报
原子与分子物理学报
Chinese Journal of Lasers B
中国激光医学杂志
强激光技术进展
大气与环境光学学报
高功率激光及等离子体物理研究论文集(专题)
现代科学仪器
光学仪器
光电子.激光
液晶与显示
红外
红外技术
光通信研究
半导体光子学与技术
High Power Laser Science and Engineering
Frontiers of Optoelectronics
Photonics Research
太赫兹科学与电子信息学报
Matter and Radiation at Extremes
Advanced Photonics
Opto-Electronic Advances
Journal of Innovative Optical Health Sciences
光通信技术
International Journal of Extreme Manufacturing
人工晶体学报
无机材料学报
Journal of Semiconductors

Hi,您目前在 全部期刊 期刊中, 论文搜索关键字 注意力机制 ,共找到 63 个内容。
选择下列全部论文 将 选定结果
Early Posting
王欣  樊彦国  
收起
摘要
针对高光谱图像维度高、训练样本少以及模型训练所带来的过拟合、参数过多的问题,提出一种改进的DenseNet联合空谱注意力机制(M3DDSSNet)的方法。首先对高光谱图像进行主成分分析,然后将中心像素的空间邻域输入改进的网络模型中。该模型对三维密集连接网络(3D_DenseNet)进行改进,将模型中的三维卷积块分解成空间维和光谱维的采样卷积,并在空间维度上引入空间注意力机制,在光谱维度上引入通道注意力机制,以减少模型训练参数,提取更加具有判别力的空谱联合特征。M3DDSSNet网络模型在Indian Pines、Pavia University和KSC两个数据集上分别取得了99.43%,99.74%,98.98%的总体分类精度。结果表明,该模型与2D_CNN、3D_CNN、M3RCNN、3D_DenseNet模型相比,收敛速度较快,可以提取更加深层的、判别性的特征,具有较高的分类性能。
激光与光电子学进展
2022, 59(02): 14
Early Posting
郭志涛  苏逸  袁金丽  赵琳琳  
收起
摘要
针对当前低剂量计算机断层扫描(LDCT))重建图像中存在复杂噪声与条纹伪影的问题,提出一种基于双注意力机制和复合损失的低剂量CT去噪方法。该方法通过引入空间注意力与通道注意力机制,获取了全局特征信息,并对特征权重进行了重标定,使重要的结构细节能够得以保留以,从而提升了网络的去噪性能;同时加入感知损失度量函数,使对人眼而言敏感的纹理信息得到保留。实验结果表明,在视觉效果上,所提出的算法不仅去除了低剂量CT图像中的噪声和伪影,同时也保留了更多的纹理特征与结构细节;峰值信噪比值等客观指标均高于其他对比算法。
激光与光电子学进展
2022, 59(02): 8
Early Posting
摘要
根据现场遗留鞋印推断出作案人所穿鞋型,再到周围监控视频中搜索嫌疑鞋型已成为公安机关侦破案件的重要技战法。该技战法完全依赖人工筛查,受主观影响大,易造成漏检等问题。针对这一问题,本文提出一种基于注意力机制的鞋型识别算法,实现对监控视频中的行人所穿鞋型的自动识别。首先贴近公安刑侦实战建立样本容量为300的多背景监控鞋型数据集,进而提出一种注意力机制模型,用于增强ResNet50网络对鞋子重要特征的提取能力。实验比对了选取不同特征层的输出作为鞋子特征及不同卷积特征聚合方法对识别精度的影响。为增强模型的泛化能力,在损失函数中加入Label Smoothing。为评估算法性能,在构建的多背景数据集上对算法进行了测试,实验结果表明,本文提出的方法最终Rank-1、mAP精度分别达到74.32%和56.97%。
激光与光电子学进展
2022, 59(02): 4
图像处理
曹城硕  袁杰  
收起
摘要
常态化疫情防控形势下,通过口罩佩戴检测可以及时提醒人们正确佩戴口罩,从而降低公共场合人员交叉感染的风险。针对口罩佩戴检测任务中被遮挡目标和小目标检测困难的问题,提出一种YOLO-Mask算法。该算法以YOLOv3为基础,在特征提取网络中引入注意力机制,以提升模型对显著特征的表达能力;然后使用特征金字塔和路径聚合策略进行特征融合,使细节特征信息得到增强,实现不同层次特征信息的充分利用;最后优化了损失函数。实验表明:对不同场景下的口罩佩戴目标进行检测,YOLO-Mask算法的平均精度均值达到93.33%,相比于原始YOLOv3算法提高7.62%;与其他主流算法相比,该算法具有更好的检测效果和鲁棒性。
激光与光电子学进展
2021, 58(8): 0810019
图像处理
鲍海龙  万敏  刘忠祥  秦勉  崔浩宇  
收起
摘要
高精度的语义分割结果往往依赖于丰富的空间语义信息与细节信息,但这两者的计算量均较大。为了解决该问题,通过分析图像局部像素具有的相似性,提出了一种基于区域自我注意力的实时语义分割网络。该网络可分别通过一个区域级的自我注意力模块和一个局部交互通道注意力模块计算出特征信息的区域级关联性和通道注意力信息,然后以较少的计算量获取丰富的注意力信息。在Cityscapes数据集上的实验结果表明,相比现有的实时分割网络,本网络的分割精度更高、速度更快。
激光与光电子学进展
2021, 58(8): 0810018
图像处理
邓志良  李磊  
收起
摘要
针对传统神经网络无法对相似度较高的中式菜品进行有效分类的问题,提出了一种基于改进残差网络的中式菜品识别 RNA-TL (ResNet with Attention and Triplet Loss) 模型。该算法先融合多尺度特征以提取深层次图像的语义信息,然后增加一层注意力机制层,给予图像重要部分更多的关注,最后利用三元组损失(Triplet Loss, TL)计算类间相似度并将结果输入到支持向量机(Support Vector Machine, SVM)中进行分类。实验表明,相较于其他主流算法模型,RNA-TL模型在中式菜品公共数据集上以及课题组采集的数据集上的识别准确率表现出更优越的性能。
激光与光电子学进展
2021, 58(6): 0610019
图像处理
贺琪  杨巧青  黄冬梅  宋巍  杜艳玲  
收起
摘要
业务流程中事件日志的分析与预测可以为流程监控和管理提供决策信息,现有研究方法多针对特定单个任务预测,不同任务间预测方法的可迁移性不高。多任务预测可以共享多个任务间的信息,提升单个任务预测的精度,但现有研究对重复活动的多任务预测效果有待提高。针对以上问题,提出一种注意力机制与双向长短时记忆结合的深度神经网络模型,实现对业务流程中重复活动和时间的多任务预测。预测模型可以共享不同任务已经学到的特征表示,实现多任务并行训练。在多个数据集中对不同方法进行对比,结果表明,所提方法提高了预测效率和预测精度,尤其对重复活动的预测精度有较好提升。
激光与光电子学进展
2021, 58(4): 0410003
机器视觉
李宇昕  杨帆  刘钊  司亚中  
收起
摘要
为了提高模型在道口环境下的车辆图像的特征提取和识别能力,提出了一种基于改进残差网络的车辆分类方法。首先以残差网络为基础模型,改进了残差块中激活函数的位置,并将残差块中的一般卷积用分组卷积代替,引入注意力机制,用焦点损失函数替换交叉熵损失函数。实验部分先用公开数据集Stanford Cars进行预训练,再用自建的道口车辆数据集进行迁移学习。结果表明,改进模型在两个数据集中的准确率均优于几种经典的深度学习模型。
激光与光电子学进展
2021, 58(4): 0415009
图像处理
摘要
针对乳腺钼靶图像中良恶性肿块难以诊断的问题,提出一种基于注意力机制与迁移学习的乳腺钼靶肿块分类方法,并用于医学影像中乳腺钼靶肿块的良恶性分类。首先,构建一种新的网络模型,该模型将注意力机制CBAM(Convolutional Block Attention Module)与残差网络ResNet50相结合,用于提高网络对肿块病变特征的提取能力,增强特定语义的特征表示。其次,提出一种新的迁移学习方法,用切片数据集代替传统方法中作为迁移学习源域的ImageNet,完成局部肿块切片到全局乳腺图片的领域自适应学习,可用于提升网络对细节病理特征的感知能力。实验结果表明,所提方法在局部乳腺肿块切片数据集和全局乳腺钼靶数据集上的AUC(Area Under Receiver Operating Characteristics Curve)分别达到0.8607和0.8081。结果证实本文分类方法的有效性。
激光与光电子学进展
2021, 58(4): 0410007
图像处理
陈子涵  吴浩博  裴浩东  陈榕  [ ... ]胡佳新  时亨通  
收起
摘要
针对现有图像超分辨重建方法难以充分重建图像的细节信息且易出现重建的图像缺乏层次的问题,提出一种基于自注意力深度网络的图像超分辨重建方法。以深度神经网络为基础,通过提取低分辨率图像特征,建立低分辨率图像特征到高分辨率图像特征的非线性映射,重建高分辨率图像。在进行非线性映射时,引入自注意力机制,获取图像中全部像素间的依赖关系,利用图像的全局特征指导图像重建,增强图像层次。在训练深度神经网络时,使用图像像素级损失和感知损失作为损失函数,以强化网络对图像细节信息的重建能力。在3类数据集上的对比测试结果表明,所提方法能够提升图像超分辨重建结果的细节信息,且重建图像的视觉效果更好。
激光与光电子学进展
2021, 58(4): 0410013
00 11