
小麦是制作馒头的主要原料之一, 小麦中水、 蛋白质、 淀粉会因产地以及烘干程度的差异而不同, 进而影响到加工成馒头的品质。 所以实现对小麦产地和烘干程度的快速鉴别就显得尤为重要。 感官评定是鉴别小麦产地和烘干程度常用的方法, 对比感官评定, 光谱分析可以识别样品中的分子结构等信息。 基于此, 尝试利用近红外和中红外光谱融合技术实现对不同产地和不同烘干程度的小麦同时鉴别。 首先选取了两个不同产地的小麦, 再利用微波干燥法对两个不同产地的小麦做烘干预处理, 使烘干的小麦水含量为12%±0.5%, 原麦水含量为18%±0.5%。 分别标记为原麦A, 烘干A, 原麦B, 烘干B, 再将小麦研磨成粉末, 过100目筛网筛选后, 置于自封袋中备用。 随后分别采集四种小麦样品的近红外和中红外光谱信息, 在Matlab 7.10的环境下使用标准正态变量变换(standard normal variable transformation, SNVT)对采集到的原始光谱数据进行预处理, 利用主成分分析对预处理后的数据进行降维处理, 再结合线性判别分析(linear discriminant analysis, LDA)和支持向量机(support vector machine, SVM)分别建立小麦近红外、 中红外光谱数据识别模型。 另外利用联合区间偏最小二乘法(synergy interval partial least square, SiPLS)筛选出利用标准正态变量变换(SNVT)预处理后的小麦近红外和中红外光谱数据特征光谱区间, 将筛选出的近红外和中红外光谱数据特征光谱区间融合后再结合线性判别分析(LDA)和支持向量机(SVM)建立小麦融合光谱信息的识别模型。 然后比较同种光谱数据下利用线性判别分析(LDA)和支持向量机(SVM)建立的小麦识别模型识别率、 比较同种建模方法下近红外和中红外光谱数据建立小麦识别模型识别率、 比较同种建模方法下光谱数据融合和单一光谱数据建立小麦识别模型识别率。 结果表明, 同种光谱分析方法, 利用SVM建立的四种小麦识别模型识别率高于利用LDA建立的小麦识别模型识别率。 同种建模方法, 近红外光谱数据建立的小麦识别模型识别率优于中红外光谱数据建立的小麦识别模型识别率。 而在同种建模方法下, 利用SiPLS筛选出近红外和中红外光谱数据的特征光谱区间数据融合后建立小麦识别模型识别率最高, 光谱数据融合后结合LDA建立的小麦识别模型校正集识别率为98.75%, 预测集识别率为97.50%; 而将此选择的变量结合SVM建立的小麦识别模型的校正集和预测集识别率都达到100.0%。 对比利用单一光谱数据建立的小麦识别模型识别率, 光谱数据融合之后建立的小麦识别模型识别率得到显著提高, 该研究从纵向和横向上全面地比较了光谱数据建立的小麦模型识别率, 结果可为更准确地运用光谱融合技术建立小麦产地以及烘干程度识别模型提供参考。