检索

中国激光
激光与光电子学进展
Chinese Optics Letters
光学学报
光子学报
应用激光
应用光学
强激光与粒子束
量子光学学报
激光杂志
激光与红外
激光生物学报
激光技术
红外与激光工程
光学与光电技术
光学 精密工程
光学技术
光散射学报
光谱学与光谱分析
光电子技术
光电工程
发光学报
半导体光电
红外与毫米波学报
量子电子学报
原子与分子物理学报
Chinese Journal of Lasers B
中国激光医学杂志
强激光技术进展
大气与环境光学学报
高功率激光及等离子体物理研究论文集(专题)
现代科学仪器
光学仪器
光电子.激光
液晶与显示
红外
红外技术
光通信研究
半导体光子学与技术
High Power Laser Science and Engineering
Frontiers of Optoelectronics
Photonics Research
太赫兹科学与电子信息学报
Matter and Radiation at Extremes
Advanced Photonics
Opto-Electronic Advances
Journal of Innovative Optical Health Sciences
光通信技术
International Journal of Extreme Manufacturing
人工晶体学报
无机材料学报
Journal of Semiconductors

Hi,您目前在 全部期刊 期刊中, 论文搜索关键字 线性判别分析 ,共找到 22 个内容。
选择下列全部论文 将 选定结果
光谱学
季佳华  王继芬  何欣龙  
收起
摘要
光谱数据融合作为一种新兴的光谱分析技术,可以有效结合不同光谱技术的检出特点。本文将红外光谱指纹区与拉曼光谱信号较强波段数据进行融合,对288个手帕纸样本开展分类研究。采用线性判别分析对189个训练样本建立分类模型,模型的分类结果相比于独立使用红外光谱或拉曼光谱具有显著提升的准确率,但区分效果仍然不理想。利用主成分分析提取35个主成分进行线性判别分析的准确率可达100%。提取测试样本的32个主成分建模,模型的准确率可达到100%,分类结果理想。光谱融合技术为法庭科学领域手帕纸的分类鉴别提供了一种有效工具。
激光与光电子学进展
2021, 58(3): 0330004-1
医用光学与生物技术
摘要
以银纳米材料作为活性基底构建的表面增强拉曼散射(SERS)检测系统可以改善拉曼技术对生物活性物质检测时信号弱的缺点。本文对18例滑膜型关节炎病患的关节液样本和15例健康人的关节液样本进行SERS检测,收集SERS光谱数据后采用谱峰归属法、主成分分析(PCA)-线性判别分析(LDA)算法对样本数据进行分析。结果表明:关节炎病患关节液样本中的多糖(477 cm -1)、DNA(722 cm -1)、δ(CH2)(1439 cm -1)、鸟嘌呤(N3)(1576 cm -1)和酰胺I带(1676 cm -1)比健康人的多,而糖原(490 cm -1)、磷脂酰肌醇(596 cm -1)、蛋白酪氨酸(640 cm -1)、葡萄糖(1071 cm -1)和蛋白酰胺吸收(1645 cm -1)比健康人低。PCA-LDA算法对该疾病的诊断特异性和灵敏度分别为83.3%和80%。本研究说明以银纳米材料为活性基底的SERS光谱技术对诊断和分析滑膜型关节炎疾病具有一定的可行性和参考价值。
激光与光电子学进展
2021, 58(1): 117001
Early Posting
季佳华  王继芬  何欣龙  
收起
摘要
光谱数据融合作为一种新兴的光谱分析技术,可以有效结合不同光谱技术的检出特点。采用红外光谱指纹区和拉曼光谱信号较强波段数据融合对288个手帕纸样本开展分类研究,通过线性判别分析对189个训练样本建立分类模型,相比于独立使用红外光谱和拉曼光谱准确率显著提升,但是区分效果仍然不理想,利用主成分分析提取35个主成分进行线性判别分析的正确率可达100%。提取的测试样本32个主成分建模的准确率达到100%,分类结果理想。光谱融合技术为法庭科学领域手帕纸的分类鉴别提供了一种有效工具。
激光与光电子学进展
2021, 58(03): 4
摘要
生菜的新鲜程度是影响生菜品质的最重要因素之一, 其主要取决于生菜的储藏时间, 因此, 对不同储藏时间的生菜进行准确鉴别具有重要研究价值。 由于不同储藏时间生菜的近红外光谱数据具有差异性的特点, 因而使用近红外为不同储藏时间的生菜进行鉴别分类是可行的。 通过将联合模糊C均值聚类(allied fuzzy c-means, AFCM)中的欧式距离测度替换为指数距离测度从而提出了一种GG联合模糊聚类(Gath-Geva AFCM, GGAFCM)分析算法。 GGAFCM通过迭代计算得到模糊隶属度值和典型值, 再结合近红外光谱实现了对不同存储时间生菜的高效精准鉴别。 以新鲜的生菜样本作为研究对象, 使用傅里叶近红外光谱仪(Antaris Ⅱ型)每隔12 h对生菜样本采集漫反射光谱数据, 光谱的波数范围介于10 000~4 000 cm-1之间。 首先, 通过主成分分析(principal component analysis, PCA)对采集到的1 557维生菜近红外光谱数据进行数据压缩将其降至22维, 然后通过模糊线性判别分析(fuzzy linear discriminant analysis, FLDA)对降维后的近红外漫反射光谱数据的鉴别信息进行提取。 设定鉴别向量数为2, 即通过FLDA将22维的生菜近红外光谱数据转换为了2维数据。 最后将模糊C均值聚类(fuzzy c-means, FCM)的聚类中心作为GGAFCM和AFCM的初始聚类中心, 通过运行FCM, GGAFCM和AFCM完成对不同储藏时间生菜的鉴别分类, 并对三种模糊聚类算法得到的聚类准确率、 模糊隶属度、 迭代次数进行分析。 实验结果表明: 在初始化条件相同的情况下, 采用的GGAFCM算法与FCM和AFCM算法相比具有更高的鉴别准确率。 在m=2的情况下, GGAFCM的鉴别准确率达到了95.56%, 而AFCM的聚类准确率为91.11%。 GGAFCM迭代4次达到收敛, 而AFCM与FCM均需要8次迭代计算才能达到收敛。 基于近红外光谱技术, 通过GGAFCM结合PCA与FLDA算法可以高效快速且无损的完成对储存时间不同的生菜的准确鉴别分类, 为生菜储存时间的准确、 快速鉴别提供了实验依据和参考方法, 具有一定的实际应用价值。
光谱学与光谱分析
2021, 41(3): 932
摘要
为了判别嘉峪关戏台文物建筑彩画的胶料种类, 采用皮胶、 鱼鳔胶、 蛋清、 蛋黄、 牛奶为参考样品, 使用傅里叶红外光谱仪采集了参考样品及三件文物样品胶料的红外吸收光谱, 利用主成分分析结合线性判别分析(PCA-LDA)构建胶料种类判别的数学模型, 并应用于文物样品。 发现参考样品红外光谱在1 800~1 000 cm-1区间包含了丰富的分子结构特征信息。 该区间中蛋白类胶料的共同特征为1 650 cm-1附近的仲酰胺CO键伸缩振动峰, 1 542 cm-1附近的酰胺C—N键伸缩振动和N—H键弯曲振动峰, 1 240 cm-1附近的酰胺C—N键伸缩振动峰。 此外, 蛋黄、 皮胶和牛奶因其中含有较多脂类物质, 在1 745 cm-1附近还存在饱和脂肪酸酯羰基CO键伸缩振动峰。 在此基础上, 通过对参考样品红外吸收光谱主成分得分散点图的分析, 发现不同胶料参考样品的红外光谱类间差异显著。 据此, 使用参考样品红外光谱的主成分得分为训练集, 添加类别变量拟合判别函数, 绘制函数组质心图并进行交叉验证, 得出方程的判别正确率为93.3%。 发现因老化降解导致三件文物样品的红外吸收光谱与参考样品光谱有所不同, 但仍具有蛋白类胶料的特征。 利用PCA-LDA分析模型对文物胶料种类进行判别, 结果均为皮胶。 该胶料种类判别模型稳定、 有效, 用该模型判定嘉峪关建筑彩画胶料为动物胶中皮胶。
光谱学与光谱分析
2021, 41(3): 796
图像处理
李新春  马红艳  林森  
收起
摘要
针对单一描述符无法准确获取有效掌纹特征导致识别率低的问题,提出一种基于子空间与纹理特征融合的掌纹识别方法。利用稳健线性判别分析和局部方向二值模式分别获取掌纹图像的子空间特征和纹理特征;基于加权串联方法实现子空间特征与纹理特征的有效融合;根据融合特征向量间的卡方距离进行匹配识别。在PolyU图库和自建非接触图库上的实验结果表明,识别时间分别为0.3069 s和0.3127 s,最低等误率分别为0.3440%和1.4922%;与其他方法相比,所提方法在保证实时性的前提下,能够准确提取掌纹图像的有效特征信息,提高系统识别性能。
激光与光电子学进展
2019, 56(7): 071007
邹小波  封 韬  郑开逸  石吉勇  [ ... ]黄晓玮  孙 悦  
收起
摘要
小麦是制作馒头的主要原料之一, 小麦中水、 蛋白质、 淀粉会因产地以及烘干程度的差异而不同, 进而影响到加工成馒头的品质。 所以实现对小麦产地和烘干程度的快速鉴别就显得尤为重要。 感官评定是鉴别小麦产地和烘干程度常用的方法, 对比感官评定, 光谱分析可以识别样品中的分子结构等信息。 基于此, 尝试利用近红外和中红外光谱融合技术实现对不同产地和不同烘干程度的小麦同时鉴别。 首先选取了两个不同产地的小麦, 再利用微波干燥法对两个不同产地的小麦做烘干预处理, 使烘干的小麦水含量为12%±0.5%, 原麦水含量为18%±0.5%。 分别标记为原麦A, 烘干A, 原麦B, 烘干B, 再将小麦研磨成粉末, 过100目筛网筛选后, 置于自封袋中备用。 随后分别采集四种小麦样品的近红外和中红外光谱信息, 在Matlab 7.10的环境下使用标准正态变量变换(standard normal variable transformation, SNVT)对采集到的原始光谱数据进行预处理, 利用主成分分析对预处理后的数据进行降维处理, 再结合线性判别分析(linear discriminant analysis, LDA)和支持向量机(support vector machine, SVM)分别建立小麦近红外、 中红外光谱数据识别模型。 另外利用联合区间偏最小二乘法(synergy interval partial least square, SiPLS)筛选出利用标准正态变量变换(SNVT)预处理后的小麦近红外和中红外光谱数据特征光谱区间, 将筛选出的近红外和中红外光谱数据特征光谱区间融合后再结合线性判别分析(LDA)和支持向量机(SVM)建立小麦融合光谱信息的识别模型。 然后比较同种光谱数据下利用线性判别分析(LDA)和支持向量机(SVM)建立的小麦识别模型识别率、 比较同种建模方法下近红外和中红外光谱数据建立小麦识别模型识别率、 比较同种建模方法下光谱数据融合和单一光谱数据建立小麦识别模型识别率。 结果表明, 同种光谱分析方法, 利用SVM建立的四种小麦识别模型识别率高于利用LDA建立的小麦识别模型识别率。 同种建模方法, 近红外光谱数据建立的小麦识别模型识别率优于中红外光谱数据建立的小麦识别模型识别率。 而在同种建模方法下, 利用SiPLS筛选出近红外和中红外光谱数据的特征光谱区间数据融合后建立小麦识别模型识别率最高, 光谱数据融合后结合LDA建立的小麦识别模型校正集识别率为98.75%, 预测集识别率为97.50%; 而将此选择的变量结合SVM建立的小麦识别模型的校正集和预测集识别率都达到100.0%。 对比利用单一光谱数据建立的小麦识别模型识别率, 光谱数据融合之后建立的小麦识别模型识别率得到显著提高, 该研究从纵向和横向上全面地比较了光谱数据建立的小麦模型识别率, 结果可为更准确地运用光谱融合技术建立小麦产地以及烘干程度识别模型提供参考。
光谱学与光谱分析
2019, 39(5): 1445
傅海军  周树斌  武小红  武 斌  [ ... ]孙 俊  戴春霞  
收起
摘要
茶作为世界最受欢迎的三大饮料之一, 不仅能够提神醒脑, 而且还有帮助消化和降低血压等作用。 随着人们对茶叶品质要求的日益提高, 需要对不同品种的茶叶实现准确的鉴别分析以防止茶叶市场里茶叶品牌名不副实和以次充好等现象的发生。 为实现对茶叶快速精准的鉴别分析, 设计了一种综合采用傅里叶近红外光谱和新的模糊极大熵聚类(FEC)分析算法的茶叶品种鉴别系统。 传统模糊极大熵聚类分析在聚类含噪声数据时, 聚类结果往往容易出现错误, 即FEC对噪声数据敏感。 为解决这个问题, 在FEC分析算法的基础上引入可能C均值聚类分析(PCM), 提出了一种混合模糊极大熵聚类(MFEC)分析算法。 MFEC可通过迭代计算得到模糊隶属度值, 能实现对含噪声的茶叶傅里叶近红外光谱数据的准确聚类分析。 首先, 使用傅里叶近红外光谱仪(Antaris Ⅱ型)采集岳西翠兰、 六安瓜片、 施集毛峰三种安徽茶叶的傅里叶近红外光谱数据, 光谱波数范围为10 000~4 000 cm-1。 其次, 对采集到的光谱数据使用多元散射校正(MSC)进行预处理, 预处理后先用主成分分析(PCA)将光谱数据维数降至10维, 然后再用线性判别分析(LDA)对降维后的近红外光谱数据进行特征提取。 最后, 通过混合模糊极大熵聚类分析和传统的模糊极大熵聚类分析对三种茶叶的光谱数据进行聚类分析, 并对两种聚类分析算法得到的聚类准确率、 收敛速度等进行对比分析。 实验结果表明: 混合模糊极大熵聚类(MFEC)分析算法与传统的模糊极大熵聚类(FEC)分析算法相比较, 在相同的权重指数m下MFEC具有更高的聚类准确率。 在m=2条件下, MFEC的聚类准确率达到了100%, 而传统的模糊极大熵聚类在相同条件下聚类准确率仅为37.98%。 MFEC收敛过程中仅需迭代10次即可达到收敛, 而FEC需要迭代100次, 因此MFEC可以更高效的进行模糊聚类分析, MFEC相比于FEC聚类性能具有明显的优越性。 通过傅里叶近红外光谱技术, 混合模糊极大熵聚类分析结合PCA与LDA算法构建的茶叶品种鉴别系统能够高效快速的完成对岳西翠兰、 六安瓜片、 施集毛峰三种茶叶的准确分类, 为茶叶检测领域提供了一种创新的方法与设计思路, 具有一定的理论价值和良好的市场应用前景。
光谱学与光谱分析
2019, 39(11): 3465
图像处理
茅正冲  陈强  
收起
摘要
针对自动引导车(AGV)视觉引导过程中多分支路径识别与跟踪的实时性与稳健性要求, 提出一种主成分分析(PCA)-线性判别分析(LDA)与支持向量机(SVM)相结合的路径识别算法。首先对AGV行驶过程中拍摄的图像进行预处理, 并用PCA与LDA对处理后的图像进行降维和特征提取, 再利用灰狼优化算法优化后的SVM分类器对图像进行识别。在路径跟踪方面, 利用最小二乘拟合方法计算横向偏差与航向偏差。实验表明, PCA-LDA与SVM相结合能够使路径识别率达到99.3%, 并且满足实时性要求, 路径跟踪误差在20 mm以内, 满足一般工业环境需求。
激光与光电子学进展
2018, 55(9): 91005
李四海  余晓晖  赵 磊  晋 玲  
收起
摘要
傅里叶变换红外光谱通常包含有大量的波长变量点, 对其进行定性分析需要建立稳健的、 可解释性的分类模型。 稀疏线性判别分析(SLDA)是一种较为新颖和有效的机器学习算法, 常用于高维度、 小样本数据的变量筛选和判别分析, SLDA通过在线性判别分析中引入正则项, 使分类器训练过程和变量选择过程同时完成, 不同判别方向上载荷系数的稀疏性则增强了模型的可解释性。 采集甘肃不同产地的秦艽样本94个, 其中麻花秦艽(Gentiana straminea Maxim)30个, 黄管秦艽(Gentiana officinalis)28个, 大叶秦艽(Gentiana macrophylla Pall)36个, 利用傅里叶变换红外光谱法获得所有样本的光谱图。 取其中70个样本构成训练集, 剩余24个为测试集。 使用训练集建立SLDA模型, 对2个判别方向上不为0的载荷系数个数进行网格化寻优, 得到了最优的参数空间。 利用建立的SLDA模型对测试样本进行预测, 其分类准确率达到100%, 实现了对三种秦艽的快速、 准确鉴别。 实验结果表明, 与PLS-DA方法相比, SLDA模型在分类准确率、 稀疏性及可解释性方面均具有一定优势, 是一种新颖、 有效的光谱定性分析方法。
光谱学与光谱分析
2018, 38(8): 2390
00 11