检索

中国激光
激光与光电子学进展
Chinese Optics Letters
光学学报
光子学报
应用激光
应用光学
强激光与粒子束
量子光学学报
激光杂志
激光与红外
激光生物学报
激光技术
红外与激光工程
光学与光电技术
光学 精密工程
光学技术
光散射学报
光谱学与光谱分析
光电子技术
光电工程
发光学报
半导体光电
红外与毫米波学报
量子电子学报
原子与分子物理学报
Chinese Journal of Lasers B
中国激光医学杂志
强激光技术进展
大气与环境光学学报
高功率激光及等离子体物理研究论文集(专题)
现代科学仪器
光学仪器
光电子.激光
液晶与显示
红外
红外技术
光通信研究
半导体光子学与技术
High Power Laser Science and Engineering
Frontiers of Optoelectronics
Photonics Research
太赫兹科学与电子信息学报
Matter and Radiation at Extremes
Advanced Photonics
Opto-Electronic Advances
Journal of Innovative Optical Health Sciences
光通信技术
International Journal of Extreme Manufacturing
人工晶体学报
无机材料学报
Journal of Semiconductors

Hi,您目前在 全部期刊 期刊中, 论文搜索关键字 Sun Yun ,共找到 4 个内容。
选择下列全部论文 将 选定结果
Early Posting
摘要
Chalcopyrite Cu(In,Ga)Se2 (CIGS) thin films deposited in a low-temperature process (450 °C) usually produces fine grains and poor crystallinity. Herein, different Ag treatment processes, which can decrease the melting temperature and enlarge band gap of the CIGS films, were employed to enhance the quality of thin films in a low-temperature deposition process. It is demonstrated that both the Ag precursor and Ag surface treatment process can heighten the crystallinity of CIGS films and the device efficiency. The former is more obvious than the latter. Furthermore, the Urbach energy (EU) is also reduced with silver doping. This work aims to provide a feasible silver-doping process for the high-quality CIGS films in a low-temperature process.
Chinese Optics Letters
2021, 19(11):
摘要
An eco-friendly Zn(O,S) film with a wider band gap is emerging as one of the promising Cd-free replacement material, which can be deposited by radio frequency sputtering. The effect of sputtering pressure on the Zn(O,S) films properties and the devices performance are studied systematically. At high pressure, the ZnS phase is found in the Zn(O,S) films resulting in a higher barrier at Zn(O,S) /CIGS interface which would lead to a low recombination activation energy (Ea). By reducing sputtering pressure, single phase of Zn(O,S) films are conducive to carrier transport as well as promote the films electric properties, ultimately improving the performance of Zn(O,S)/CIGS solar cells.
Optoelectronics Letters
2019, 15(6): 435
Materials
摘要
Optoelectronics Letters
2018, 14(5): 363
LI Bo-yan  ZHANG Yi  LIU Wei  SUN Yun  
收起
摘要
Cu(In,Ga)Se2 (CIGS) films are deposited on the Na-free glass substrate using three-stage co-evaporation process, and the effects of thickness and growth temperature on the orientation of CIGS film are investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). When the growth of CIGS film does not experience the Cu-rich process, the increase of the growth temperature at the second stage (Ts2 ) promotes the (112) orientation of CIGS film, and weakens the (220) orientation. Nevertheless, when the growth of CIGS film experiences Cu-rich process, the increase of Ts2 significantly promotes the (220) orientation. In addition, with the thickness of CIGS film decreasing, the extent of (In,Ga)2Se3 (IGS) precursor orientation does not change except for the intensity of Bragg peak, yet the (220) orientation of following CIGS film is hindered, which suggests that (112) plane preferentially grows at the initial growth of CIGS film.
Optoelectronics Letters
2012, 8(5): 348
1
00 11