做科研，非一朝一夕

—买器材，应速战速决

Newport数千种优质产品当日发货，更多惊喜尽在PhotonSpeed™光速购！
Design of the Local Beam Branch in CO$_2$ Laser Imaging Radar Optical System

LIU Li-ping, WANG Qi
(National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China)

Abstract For improving the heterodyne efficiency in CO$_2$ laser imaging radar system, a focus-off telescope is applied as beam broadening system to adjust the position of the local beam waist in local beam branch of the CO$_2$ laser imaging radar optical system. By adjusting the local beam waist to the focal plane of the imaging objective lens the best phase matching situation is accomplished between the local beam and the signal beam reflected from the target.

Key words radar engineering; laser imaging optical system; heterodyne efficiency; Gaussian laser beam; phase matching

1 引言

由于相干外差探测具有高灵敏度的特点，采用相干外差探测方式的 CO$_2$ 激光成像光学系统的应用已经得到了高度的重视。相干外差探测 CO$_2$ 激光成像光学系统被广泛地用于雷达系统大气遥感、目标探侧、测距、跟踪等(1)。

采用相干外差探测方式，要求到达探测器表面的信号光与本振光的混频效率尽量高。尤其是在探测远距离的微弱信号时，对混频效率的要求更为严格。提高外差探测混频效率的基本方法是提高信号光束与本振光束在探测器表面的匹配程度，这种匹配包括偏振态匹配、振幅匹配和位相匹配。一般采用布儒斯特板加一个 $\lambda/4$ 波片实现收发偏振隔离和本振光与信号光的偏振态匹配(2)。振幅匹配可以通过选择适当的本振功率实现。而实现位相匹配的难度较大，要求经过光学系统到达探测器表面的信号光和本振光的波面畸变都尽量小。而且两束光波矢的夹角尽量小，即空间对准精度尽量高，这对光学系统的像差设计和装调精度都提出了很高的要求。特别是当信号光为平面波，而本振光为高斯光束时，更增加了位相匹配的难度。

本振光的作用是把从本振激光器出射的光束经光学系统交换到能在探测器表面产生与信号光相匹配的振幅与位相分布，以便获得较高的外差探测
效率。一般由一个扩束望远系统将从本振激光器输出的光束扩展到所要求的口径，再经过成像物镜会聚到探测器表面。

研究表明，在探测器表面的频谱场是高斯光波频谱场与信号平面波的艾里斑叠加，而且，当高斯本振光的束腰与信号光的艾里斑在探测器的接收灵敏面上重合时，外差混频效率最高。这里需要特别考虑的是，如果本振光与目标反射的信号光在成像物镜前混频，再经过同一成像物镜会聚时，由于本振光所遵循的变换和传输规律与平面波不同，在处于成像物镜焦面上的探测器表面所成的像不是本振激光束的束腰，而是由一个曲率半径很小的球面波，这将导致外差混频效率的下降。图1为焦面附近高斯光束结构示意图，其中，D为成像物镜焦面位置，探测器的灵敏面与之重合，W为从成像物镜出射的高斯本振光束腰的位置，P为W与D之间的距离，R为经过D点的本振光的等相面曲率半径，O为其曲率中心，r为探测器光敏面半径。

图1 成像物镜焦面附近高斯本振光的位相分布简图
Fig. 1 Schematic of the local Gaussian beam wavefront nearby the image lens focus plane

图2 CO2激光成像光学系统原理图
Fig. 2 Schema of CO2 laser image system’s optical system

在已有关于高斯光束腰位置对位相匹配影响的研究中，曾提到在本振光路中使用倍数可调扩束器提高外差效率的方法。已完成的本振光路设计参数是：选用伽利略型透射式望远系统作为扩束系统，扩束比是8.7倍，预扩束望远系统置于离焦状态，离焦量为-0.06 mm。图2为CO2激光雷达的光学系统结构简图。

2 设计方法

基模高斯光束经过薄透镜的传输规律为：

$$\frac{1}{s_i} = \frac{1}{f} - \frac{1}{s_o} \cdot \frac{1}{1 + \frac{z_{01}}{s_o(s_o - f)}}$$ \hspace{1cm} (1)

$$w_o = w_0 \frac{f}{[\frac{z_{01}}{s_o} + (s_o - f)]^{1/2}}$$ \hspace{1cm} (2)

其中，s_o为入射光束束腰到薄透镜的距离，f为薄透镜的焦距，s_i为从薄透镜出射的光束束腰与薄透镜间的距离，w_o为入射光束束腰半径，w_0为出射光束束腰半径，$z_{01} = \frac{\pi w_0^2}{\lambda}$为入射光束的瑞利长度，图3是各参数示意图。

图3 高斯光束通过薄透镜的变换
Fig. 3 Transformation of Gaussian beam through lens

分析式(2)可知，仅当$s_o = f$时，$s_i = f$严格成立，所以，要使本振光束腰经过成像物镜后与置于焦面的探测器表面重合，则要求从前方预扩束系统出射的本振光的束腰在成像物镜的前焦面上。

一般为减小体积，同时满足大功率发射的需要，预扩束系统采用透射式伽利略型望远结构，当预扩束系统处于重焦状态时，从激光器出射的激光束经过望远系统后的变换规律是

$$s_i = -M_T(f_1 + f_2) - M_T s_o$$ \hspace{1cm} (3)

$$w_{o2} = \left| \frac{1}{M_T} \right| w_{o1}$$ \hspace{1cm} (4)

其中，w_{o1}为物方腰斑半径，s_i为物方腰斑半径与望远系统目标像的距离，w_{o2}为从望远系统出射的像方腰斑半径，s_o为像方腰斑半径与望远系统物镜的距离，f_1, f_2分别为望远系统物镜和物镜的焦距。图4是各参数示意图。
分析上式可知，像方透镜位置由望远系统的参数和激光器对望远系统的距离确定。当 $s_0 \gg f_1 + f_2$ 时，有 $s_0 \cong M_1 s_0$，这时像方透镜在望远系统的左侧，如图4所示。这正是我们已完成研磨的CO₂脉冲外差激光成像系统中的情形。这时，若要求成像物镜的前焦面重合，则要求成像物镜有很长的焦距，这会加大系统长度，不满足系统小型化和使用要求；同时由于增大了成像物镜后焦面上艾里斑的线度，将会降低系统的信噪比，引起外差效率的下降。

为了调节从预扩束望远系统出射的高斯光束束腰的位置，考虑采用离焦望远系统作为预扩束系统。基模高斯光束通过离焦望远系统的变化规律是

$$s_i = f_2 \left(\frac{M_1 Z_1}{f_2} + \frac{1}{R_{f_1}} \right)^{-1} \tag{5}$$

$$R_{f_1} = \frac{(s_0 - f_1)^2 + Z_{01}}{s_0 - f_1} \tag{6}$$

$$Z_1 = \frac{(s_0 - f_1)^2 + Z_{01}}{Z_{01}} \tag{7}$$

其中，Δ 为预扩束望远系统的离焦量，$Z_{01} = \pi a_0^2 / \lambda$，其他符号的意义同图4。

（5）式表明，从预扩束望远系统出射的本振光束束腰位置是一个与望远系统的离焦量有关的量，因此，可以通过调节离焦量来调节束腰的位置。

3 实例分析

根据上述的分析结果，结合我们所研制的激光成像系统的具体使用要求，给出了一个实例分析计算结果，这是对我们目前使用的预扩束系统的改进设计。该预扩束系统是卡利略望远系统，其结构参数为：$f_1 = -5.86$ mm，$f_2 = 50.982$ mm，$M_1 = 8.7$，$s_0 = 570$ mm，$Z_{01} = 135$ mm。将这些参数代入方程（5）～（7）中得到的离焦量的一组解使预扩束望远系统的像质的改变太大，不能满足系统用于相干外差探测的使用要求。为此，我们选用了离焦望远系统的一种特殊情形，即

$$\frac{\Delta}{f_1} + \frac{1}{R_{f_1}} = 0 \tag{8}$$

这时有 $s_i = f_2$，即从预扩束系统出射的本振光束束腰严格位于预扩束系统物镜的后焦面上。由上面给出的参数和方程（5）～（7），求得离焦量 $\Delta = -0.06$ mm，在此离焦量下，预扩束望远系统的像质和相关参数可以满足使用要求。图5是高斯光束经过预扩束望远系统和成像物镜的传输与变换原理图，图6是预扩束望远系统在重焦状态和离焦状态的最大视场的波像差曲线，波像差的最大改变量是 $\Delta W_{max} = 0.0011 \lambda$，其中 $\lambda = 10.6 \mu m$，由于此波像差的改变量对系统像质的影响可以忽略，因此这种离焦预扩束系统的设计方案是可行的，这也是在采用离焦预扩束系统中需要特别注意的问题。

图5 高斯光束通过预扩束望远系统和成像物镜的传输与变换原理图

Fig. 5 Propagation and transformation of Gaussian beam through expanding beam telescope system and imaging lens
4 结 论

根据对基模高斯光束通过光学系统的变换特性的分析，提出了外差探测激光成像系统的本振光路
采用离焦望远系统作为预扩束系统的设计方案。通过调节离焦量来调节本振光路中高斯光束轴线的位
置，实现探测器上主振回波信号与本振光位相的最佳匹配，提高系统的外差探测效率。在对一般变
换规律分析的基础上给出了设计实例，并由此归纳出该方案的一般的设计方法及使用时需注意的问
题。尽管该方案是针对我们具体系统的使用中所遇到的问问题提出的，但是，它的一般原理对于采用激光作为
光源的相干外差探测系统高斯本振光路的设计具有重要意义。

参考文献
1 Duane L. Patrick, Laser tracker II; Sandia National
Laboratories' second generation laser tracking system [C]. SPIE, 1991. **1482**: 61～68
2 J. L. Meyzonneux, G. Saccomani, Imaging CO2 laser radar, A comparison of three techniques; LFM pulse
3 Takashi Takenaka, Nobuhiro Saga, Otozo Fukumitsu, Optical heterodyne detection of an Airy signal field with a
Gaussian local-oscillator field [C]. SPIE, 1997. **MS133**: 419～425